Empirical Bayesian regularization of the inverse acoustic problem - Archive ouverte HAL
Article Dans Une Revue Applied Acoustics Année : 2015

Empirical Bayesian regularization of the inverse acoustic problem

Résumé

This paper answers the challenge as how to automatically select a good regularization parameter when solving inverse problems in acoustics. A Bayesian solution is proposed that consists either in directly finding the most probable value of the regularization parameter or, indirectly, in estimating it as the ratio of the most probable values of the noise and source expected energies. It enjoys several nice properties such as ease of implementation and low computational complexity (the proposed algorithm boils down to searching for the global minimum of a 1D cost function). Among other advantages of the Bayesian approach, it makes possible to appraise the sensitivity of the reconstructed acoustical quantities of interest with respect to regularization, a performance that would be otherwise arduous to achieve.
Fichier principal
Vignette du fichier
Bayesian_Regularization_revised(1).pdf (918.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01176879 , version 1 (16-07-2015)

Identifiants

Citer

Antonio A. Pereira, Jérôme Antoni, Q. Leclere. Empirical Bayesian regularization of the inverse acoustic problem. Applied Acoustics, 2015, pp.11-29. ⟨10.1016/j.apacoust.2015.03.008⟩. ⟨hal-01176879⟩
181 Consultations
692 Téléchargements

Altmetric

Partager

More