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Empirical Bayesian regularization of the inverse acoustic problem

A. Pereiraa,∗, J. Antonia, Q. Lecl̀erea

aLaboratoire Vibrations Acoustique, INSA Lyon, 25 bis avenue Jean Capelle F-69621 Villeurbanne Cedex, FRANCE

Abstract

This paper answers the challenge as how to automatically select a good regularization parameter when solving inverse

problems in acoustics. A Bayesian solution is proposed thatconsists either in directly finding the most probable value

of the regularization parameter or, indirectly, in estimating it as the ratio of the most probable values of the noise and

source expected energies. It enjoys several nice properties such as ease of implementation and low computational

complexity (the proposed algorithm boils down to searchingfor the global minimum of a 1D cost function). Among

other advantages of the Bayesian approach, it makes possible to appraise the sensitivity of the reconstructed acoustical

quantities of interest with respect to regularization, a performance that would be otherwise arduous to achieve.

Keywords:

Inverse problems, regularization, Tikhonov regularization, Bayesian probabilities, source identification, acoustical
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1. Introduction

The inverse acoustic problem aims at reconstructing an acoustic quantity of interest (e.g. parietal pressure, particle

velocity, acoustical intensity) from a limited number of remote measurements – as typically returned by an array of

microphones or probes. As well-known, this is an ill-posed problem in the sense of Hadamard – i.e. it may have

no solution at all or the solution may not be unique and it may be extremely sensitive to slight changes in the initial

conditions [1] – for its exact solution would require measuring the complete field over a surface enclosing the source(s)

of interest. As a consequence, solutions of an ill-posed inverse acoustic problems are typically found unstable with

respect to very small perturbations in the measurements. Since ill-posedness fundamentally results from unavoidable

loss of information during the measurement process, the usual cure is toregularize– i.e. to modify – the inverse

operator so as to control the magnitude or energy of the expected solution within plausible limits [2–11]. In practice,

the resort to regularization is just as essential as it is difficult and, in many aspects, it appertains as much to an art as

to exact science.

The prevailing approach in acoustics and vibration is surely the popular Tikhonov regularization (control of the

energy of the solution) [1, 12–17]. A critical aspect of Tikhonov regularization – actually shared by most regular-
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ization techniques – is how to automatically determine the amount of regularization to be introduced in the system,

which translates into the determination of a “regularization parameter”. Several strategies have been developed in this

perspective, however, at the present time, there is still noabsolutely universal method that is robust enough and always

produces good results. Amongst the parameter choice methods used in the field of acoustics and vibration,the Gen-

eralized Cross Validation (GCV) [18] and the L-curve [19] seem to prevail largely, although other methods have been

investigated such asthe Normalized Cumulative Periodogram (NCP) [20, 21] and the Morozov discrepancy principle.

The latter depends on a good estimate of the measurement noise level, that may not be available in practice. NCP is a

relatively recent method whose idea is to track the aspect ofthe residual error as the regularization parameter changes

and select the parameter for which the residual can be considered as close as possible to white noise. Several papers

in the literature provide comparisons of different parameter choice methods, either applied in acoustics [10, 22–26]

or in vibrations [27]. A general conclusion is that the behavior of each method is very problem-dependent and no

consensus on which one is the best has been reached.Indeed, the inverse acoustic problem is sometimes so much

ill-posed that choosing a proper regularization strategy can make a real difference. Recent publications in acoustics

propose different regularization techniques, such as iterative methods (beneficial when dealing with large-scale prob-

lems) [28], Tikhonov regularization in its general form (i.e. by the use of discrete smoothing norms) [2], and a sparse

regularization techniques [29–31], to cite only a few. Mostof them still depend on either a regularization parameter

that must be optimally tuned or on a stopping rule for the iterative methods. In a more general context (i.e. outside the

field of acoustics), reference [32] provides an extensive comparison of several parameter choice methods by means of

a large simulation study.

This paper introduces a Bayesian approach to regularization that is conceptually rather different from former

methodologies that have been prevailing in inverse acoustics. The key idea is to conceive regularization as the in-

troduction of prior information to compensate for the loss of information resulting from the measurement process;

this is achieved in the form of a probability density function that characterizes all physically plausible values of the

solution before the inverse problem is solved. The solutionof the inverse problem – including the reconstruction of

the acoustical quantity of interest plus the optimal tuningof the regularization parameter – is then found as the most

probable values that comply with both the measurements and the prior information. In the special case of a Gaussian

prior – which is investigated only in this paper – the proposed Bayesian regularization scheme boils down to the same

structure as Tikhonov regularization, yet with the definiteadvantage of providing rigorous criteria for automatically

tuning the regularization parameter. It is shown in this paper that the proposed Bayesian regularization enjoys several

advantages as compared to other criteria traditionally used in inverse acoustics such as GCV and the L-curve:

• for a large range of acoustical configurations (simulation and experiments), it generally returns a regularized

solution which is (in the least-square sense) closer to the optimal one,

• for a large range of physical/acoustical parameters (level of noise, frequency range, degree of ill-posedness) it

is generallymore robust to (strong) additive noise,
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• it lends itself to easy implementation for it boils down to searching for theglobal minimumof a 1-D cost

function,

• it is fully automatic and does not involve any tuning parameter (it actuallyreturnsthe noise level and expected

source energy as byproducts).

These advantages surely deserve a thorough introduction ofBayesian regularization to the acoustical community,

even though the mathematical apparatus required may seem far from the acoustical discipline. As a consequence, the

first part of the paper (in particular section 2) is presentedas a tutorial before some novel theoretical and experimental

results are introduced in other sections. In spite of several precursory Refs. [33–44], the Bayesian regularization does

not seem to have attracted much attention in acoustics (possibly because many of the former early works came with

complex iterative algorithms). It is part of the present paper aim to partly fill in this gap.The paper also highlights

several important properties which, according to the authors’ knowledge, have never been recognized before. Part of

the present material was first published in Ref. [45], which aimed at finding an optimal basis for source reconstruction

and demonstrating the benefit of taking prior information into account within a Bayesian framework. Herein, the

focus is on Bayesian regularization only and its generalization to any reconstruction basis, be it optimal or not. The

paper contains several original resultslisted hereafter.

• A theoretical proof is given about the existence of a global minimum of the Bayesian regularization criterion;

this property is of prime practical importance since it confers good robustness to regularization (e.g. as com-

pared to GCV and the L-curve for which a global minimum does not exist in general); in addition, it makes

possible an automated practice of regularization.

• The posterior probability density function of the regularization parameter is given in the case of complex-valued

data (i.e. Fourier transformed data); this is found useful to assess the errors due to regularization in all acoustical

quantities of interest and, as far as the authors know, a sensitivity analysis to regularization is demonstrated here

for the first time.

• Physical interpretation of Bayesian regularization is given in terms of energy (first principle of thermodynamics)

which, hopefully, will participate to bridge the gap between an abstract probabilistic theory and the intuition

gained from physics.

• Extensive experimental results are given, both on numerical and on actual data, that clearly demonstrate the

supremacy of Bayesian regularization over the GCV and L-curve methods.

The paper is organized as follows. The second section first introduces general facts about the direct acoustic prob-

lem and then addresses the inverse problem within the Bayesian probabilistic framework. One objective of this section

is to introduce the notations and probabilistic premises necessary for the remaining of the paper, and preferably so in

a self-contained treatment of the acoustic inverse problem. As mentioned above, it should be read as a tutorial on the
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Bayesian approach to inverse (acoustic) problems.The third section addresses the issue of Bayesian regularization,

where several new results are established after scrupulously following the Bayesian program. Theoretical develop-

ments are accompanied by discussions relating to the properties and practical aspects of the proposed algorithms.The

fourth section is an attempt to demonstrate a physical meaning of the proposed Bayesian regularization criteria in

terms of thermodynamics. The fifth section addresses the important question as how sensitive the inverse problem is

to regularization, to which the Bayesian framework is shownto provide a rather unique answer. Finally, the sixth sec-

tion is devoted to comparing Bayesian regularization with the state-of-the-art methods, thus demonstrating its asserted

superiority.

2. Bayesian approach to the inverse acoustic problem:a tutorial

The object of this section is to cast the inverse acoustic problem within the Bayesian probabilistic framework.

This is not only necessary to introduce the fundamental ideas and notations to be used in derivation of the Bayesian

regularization criterion in section 3 (the central result of the paper), but it also offers upstream justification to the

classical cost function used in inverse acoustics and itsad hocTikhonov regularization.Since most of the results

presented in this section can be recovered by compiling the Bayesian literature on linear models, it should be read

as a tutorial. A general reference on the Bayesian approach to inverse problems is [46]. Moreover, the treatment

of the inverse problem could be seen as dual of Bayesian linear regression [47–50] after exchanging the role of the

explanatory variables and of the regression coefficients1.

2.1. General statement of the inverse acoustic problem

Broadly speaking, the inverse acoustic problem of interestherein amounts to reconstructing a source distribution or

“source field” (e.g. parietal pressure or normal velocity) given a finite number of measurements, as typically returned

by an array of microphones (or possibly velocity or pressure-velocity probes). More formally, letq(r ), r ∈ Γ, be the

source field of interest andΓ its spatial domain, and letp(r i) be the measurement at locationr i , i = 1, ...,M, whereM

is the number of probes. The direct problem states how these quantities are relatedtogether from physical principles.

Assuming a frequency domain representation, this work makes use of the integral equation representation,

p(r i) =
∫

Γ

G(r i |r )q(r )dΓ(r ) + νi , i = 1, ...,M, (1)

whereG(r i |r ) is the (known) Green’s function of the medium between positionsr i andr , andνi accounts for measure-

ment noise and possible modeling errors. The objective of the inverse problem is to recover an estimate ofq(r ) given

the noisy measurements{p(r i); i = 1, ...,M} from the set of equations (1).

1The objectives of linear regression are, strictly speaking, oriented towards solving the direct and not the inverse problem. However, the inverse

problem can be tackled after exchanging the roles of the explanatory variables and of the regression coefficients. Although this might seem artificial

at first glance because the regression coefficients are, from a physical point of view, not variables but deterministic “transfer functions”, it causes

no problem in the Bayesian framework where all parameters are regarded as random.
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Whether explicit or not, the usual approach is first to parameterize the unknown source. In most instances, this

amounts to expanding the source field onto a spatial basis,

q(r ) ≈
K∑

k=1

ckφk(r ), K ≥ M, (2)

whereφk(r ), r ∈ Γ are known basis functions which, without loss of generality, will be considered normalized such

that
∫

Γ
|φk(r )|2dΓ(r ) = 1. Typical basis functions used in acoustics are for instance,the Fourier basis (plane waves)

and the spherical harmonics (spherical waves).Plugging Eq. (2) into Eq. (1), the direct model now becomes

p = Hc + n, (3)

where vectorsp ∈ C
M, c ∈ C

K , andn ∈ C
M havep(r i), ci , andνi for their i-th element, respectively, and [H] i j =

∫

Γ
G(r i |r )φ j(r )dΓ(r ), i = 1, ...,M, j = 1, ...,K. The inverse problem is thus turned discrete and basically consists in

identifying K unknown coefficientsck (note that the problem of jointly identifying the “best” basis functionsφk(r )

was addressed in Ref. [45]).Note that the apparent simplicity of the matrix equation (3)is only structural and does

not alleviate its intrinsic complexity in terms ofi) availability of the Green’s functionsG(r i |r ) leading to the transfer

functions [H] i j andii ) the ill-conditioning of the resulting transfer matrixH. Indeed, the strong ill-conditioning of the

acoustic inverse problem is probably why its difficulty singles out as compared to other domains.

So far, the questions still remain as which cost function should be minimized to solve forc in Eq. (3) and how the

inverse problem should be regularized when matrixH is ill-conditioned – see e.g. Refs. [24, 51]. Definite answers

are provided by the probabilistic approach introduced in the next subsection.

2.2. A probabilistic solution to inverse acoustics

The essence of the Bayesian approach resumed in this sectionis to endow all quantities of interest with probability

density functions (pdf’s). On the one hand, this provides a careful description of measurement noise, giving rise to

the so-called “likelihood function”; on the other hand it makes possible the specification of physically admissible

fluctuations in the reconstructed source field through the definition of a “prior” pdf, a precaution which intrinsically

gives rise to a regularization mechanism. The combination of the likelihood function and the prior then returns the

“posterior” pdf, that is the “inverse probability” of the vector of coefficientsc given measurementsp. This completely

solves the inverse problem, in particular by providing “point” as well as “interval” estimates to the after-sought source

field. Each of these steps is detailed hereafter.

2.2.1. Encoding experimental errors with the likelihood function

The most natural variable to endow with a pdf is the measurement noiseνi entering in the right hand side of

Eq. (1). There are many reasons why a Gaussian pdf can be reasonably assumed here. One is simply dictated by

experimental observations, where Gaussianity results from the superposition of a large number of errors as formally

proved by the Central Limit theorem [52]. Another reason stems from the passage to the frequency domain results by
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application of a (typically long) Fourier transform which,again due to the Central Limit theorem, implies convergence

to Gaussianity. Still another reason is because a Gaussian law is the “worst case” (most dispersed) one could imagine

when modeling random fluctuations with given mean value and covariance matrix according the Maximum Entropy

principle [53].

In this papern is assumed with zero mean, i.e.E{n} = 0, whereE stand for the expected value; this is because

any residual bias should be captured by the direct model as isinherent to the definition of “measurement” noise. The

noise covariance is defined asE{nnH} = β2
Ωn whereH stands for the conjugate transpose operator,β2 is the (usually

unknown) expected noise energy, andΩn is a matrix ofa priori correlation coefficients reflecting the nature of the

noise field such that Trace{Ωn} = dim(n) = M (in many cases one may simply takeΩn = I equal to the identity

matrix). Thea priori choice ofΩn = I should be viewed here as the most neutral, in the sense that noinformation

is introduceda priori. In case the experimenter may have somea priori knowledge on the nature of the noise field,

different noise models (such as described in Ref. [54, chap. 3]) may be employed. Therefore, keeping in mind thatn

is a complex-valued vector, its pdf (denoted by brackets [n|β2] for notational simplicity, where the conditioning onβ2

is explicitly reminded for reasons to become clear later in section 3) reads

[n|β2] = NC(0, β2
Ωn) =

1
πMβ2M |Ωn|

exp
(

−β−2‖n‖2
Ωn

)

, (4)

whereNC stands for “complex Gaussian”,|Ωn| is the determinant of matrixΩn and, by notational convention,‖n‖2
Ωn
=

nH
Ω
−1
n n. The reader not familiar with the pdf of complex-valued dataare referred to Refs. [55, 56] for a good support

and to Ref. [55] for an explanation on how the expression in Eq. (4) is obtained. In turn, this implies thatp in Eq. (1)

has the complex Gaussian pdf

[p|c, β2] = NC(Hc, β2
Ωn). (5)

The above pdf viewed as a function of variablesck’s is referred to as the “likelihood function” [53]. It describes the

“direct” probability of the values ofp allowed by model (1) given the random fluctuations of the measurement noise.

2.2.2. Construction of the prior probability density function

The assignment of a pdf to coefficientsck’s is conceptually less obvious, especially because these are usually

considered as deterministic parameters outside the Bayesian approach. However, one should keep in mind that these

are unknowns with no predefined values so that their estimates could just as well be considered as possible outcomes

of a random process. Concerning the coefficientsck’s, two different situations must be distinguished: their possible

outcomesbeforemeasurements are taken, the set of which reflects vague information possesseda priori by the exper-

imenter, and possible outcomesafter the measurements are taken, which should evidence much lessvariability then

the former ones. The former are described by theprior pdf [c] (investigated in this paragraph) and the latter bythe

posterior pdf[c|p] (investigated in the next paragraph).

In the present work, the prior pdf reflects a distribution of physically admissible values for the source field [57, 58].

This is rather a weak constraint (the Bayesian framework offering the possibility of considering many other types of
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constraints), but general enough for our purpose. Let us therefore assume that the complex-valued source field isa

priori of zero mean (in the ensemble average) and characterized by the covariance function,

Cq(r , r ′) , E{q(r )q(r ′)∗} = α2
K∑

k,l=1

[Ωc]klφk(r )φ∗l (r
′). (6)

The last expression (wherein∗ stands for the complex conjugate operator) results from inserting Eq. (2) and posing

α2
Ωc = E{ccH} with α2 a (typically unknown) scaling factor on the source energy and Ωc a known matrix of cor-

relation coefficients (whose exact setting depends on the problem) normalized such that Trace{Ωc} = dim(c) = K.

For instance a typical choice (implicit to deterministic approaches) is to assume that values at two different positions

on the source field are uncorrelated (i.e. a spatially white source field), leading toΩc = I K , the identity matrix of

dimensionK, which implies that
∫

Γ

E{|q(r )|2}dΓ(r ) = Kα2. (7)

A possibly more relevant choice is to enforcea priori the spatial whiteness of the source field – so as to enhance

spatial resolution;the interested reader may refer to Appendix A for a detailed explanation on how this is achieved.

From now on, many choices are possible for a prior pdf [c] that complies with the above covariance function. The

simplest choice is again to select a complex Gaussian:

[c|α2] = NC(0, α2
Ωc) =

1
πKα2K |Ωc|

exp
(

−α−2‖c‖2
Ωc

)

(8)

(where conditioning onα2 is explicitly reminded).The Gaussian choice in Eq. (4) is natural enough not to be arguable,

but this is less the case for the Gaussian prior in Eq. (8). This issue is well-known in the Bayesian literature where

it has been proved that the benefit of thepresenceof a vague prior pdf (whatever its exact shape) usually largely

counterbalances the bias introduced by a specific prior shape as compared to another one [53, 59]. Basically, the

prior information brought by such a pdf is to consider that the higher the source norm, the weaker is its probability

of existence. The advantage of the above choice is to lead to tractable calculation – as shown in the next subsection

– yet the same approach could be followed with other prior shapes provided the resulting integrals were numerically

evaluated or analytically approached [59].

2.2.3. Posterior probability density function and MAP estimate

The solution to the inverse problem is finally returned by theposterior pdf [c|p;α2] which assigns probabilities to

possible values of coefficientsck’s once the measurements are taken. Bayes rule indicates howthis pdf is obtained

from updating the prior pdf [c|α2] with the likelihood function [p|c, β2]. Namely,

[c|p, α2, β2] =
[p|c, β2][c|α2]

[p|α2, β2]
, (9)

where

[p|α2, β2] =
∫

[p|c, β2][c|α2]dc (10)
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posterior

‖c‖‖H†p‖

prior

[c|α2]
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[p|c, β2]

‖ĉ‖

Figure 1: Schematic 1D representation of the Bayesian framework. The figure shows the different terms explicitly depending onc in Bayes’ rule

(see Eq. (9)). In the case of a uniform prior, the solution depends uniquely on the likelihood and, for the case treated in this paper, it returns the

solution (maximum likelihood) in terms of the pseudo-inverse of H (notedH†). The consideration of a Gaussian prior has “biased” our search

giving rise to the posterior, whose maximum (MAP estimate) returns the regularized solution expressed byĉ.

is the “evidence” which will play a major role in deriving theBayesian regularization criterion later on in section 3.

The particularity of the Bayes rule is to express an “inverse” probability in terms of “direct” probabilities. Once the

full pdf [c|p, α2, β2] is known, a relevant point estimate of the unknown vectorc is returned by the most probable

value after observing the data, i.e. the maximum of the posterior pdf in Eq. (9) – the so-called “maximum aposteriori

estimate” (MAP).The expression for the posterior pdf is obtained by substituting for the complex Gaussians found in

Eqs. (5) and (8) into Eq. (9), leading to a quadratic cost function whose minimum returns the estimate ofc. This has

already been done in Ref. [45] for the general case of an unknown basis functionφk(r ), and thus the mathematical

details are omitted here. The standard result is then obtained:

ĉ = ΩcHH
(

HΩcHH + η2
Ωn

)−1
p (11)

where

η2 =
β2

α2
. (12)

Equation (11) is an important step towards the goal of this paper. Indeed, the consideration of a Gaussian prior

through the Bayesian framework has “mechanically” produced a regularized solution of the Tikhonov type – see e.g.

Refs. [1, 51].A simple illustration of the Bayesian framework followed hitherto is described in Fig. 1, representing

the different terms in Bayes’ rule. The significance of the regularization parameterη2 given in Eq. (12) is clearly

that of a noise-to-signal ratio (NSR) (ratio of expected noise energyβ2 to expected source energyα2). A similar

interpretation is found in early references on classical NAH [10], outside the Bayesian framework, and in statistical

approaches such as SONAH [60].

It is reminded that no assumption have been made concerning either the acoustical propagation or the nature of

sources. Although the approach requires the knowledge of the Green’s function of the medium, it is not restricted to

a particular propagation type (e.g. free-field, half-space, closed space).
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2.3. Filtration of eigenvalues

A helpful interpretation of the regularized solution (11) results from the singular-value decomposition

Ω
−1/2
n HΩ1/2

c =

M∑

k=1

skukvH
k (13)

wheres1 ≥ s2 ≥ . . . sM ≥ 0 andU = [u1u2 . . .uM] ∈ CM×M andV = [v1v2 . . . vM] ∈ CK×M form two unitary matrices

(such thatUHU = VHV = I M). Substituting into Eq. (11), one has the simple result

ĉ = Ω1/2
c V





sk

s2
k + η

2

 UH
Ω
−1/2
n p (14)

wheredskc symbolizes a diagonal matrix with generic diagonal elementsk. As well-known, this is the structure of a

generalized pseudo-inverse ofH where the smallest singular valuessk are progressively filtered out from the inversion,

i.e. sk/(s2
k + η

2) ' 1/sk if sk � η2 andsk/(s2
k + η

2) ' 0 if sk � η2 so as to prevent instability due to over-amplification

of measurement noise or simply numerical overflow whenH is ill-conditioned. In other words,η2 is clearly to be

construed as a “cutoff” frequency indicating wheres2
k passes below the NSR, a terminology especially relevant when

the unitary basisV happens to contain the complex exponentials of a Discrete Fourier transform as encountered in

classical Near-Field Acoustical Holography (NAH) [10]. Yet, common to all regularization strategies is the difficulty

in tuning optimally the value of that parameter, a practice that is not less essential than critical. The goal of the present

paper is to propose a solution that enjoys many advantages ascompared to the current state-of-the-art in acoustics.

3. Regularization within the empirical Bayesian framework

The regularization structure formulated in the previous section is known to work well provided the regularization

parameterη2 is correctly set. Obviously, rare are the situations where that value is known in advance and numerous

strategies have been proposed as how to set it, either from empirical, physical, or statistical rules. Within the Bayesian

framework, the purist approach would be to see it a “nuisanceparameter” and to integrate it out, that is to recover a

regularized version of the source field from the marginalized posterior [c|p] =
∫

[c|p, α2, β2][α2, β2]dα2dβ2. The major

difficulty that arises with this strategy is that it generally leads to integrals that are analytically intractable. Thus, not

only is an equivalent to the closed-form expression (14) lost, but computationally very demanding methods (such as

Markov Chains Monte Carlo) have to be resorted to. This is still unacceptable today in many inverse acoustic problems

where industrial feasibility is of concern (remember that the inverse problem usually has to be solved for all frequency

bins of a discrete Fourier transform). An alternative solution known as “empirical Bayes” in the literature is to replace

the unknown hyperparameters by estimates obtained from thedata. Apart from being legitimate in its own right [61],

empirical Bayes can also be seen as a very good approximationto the full Bayesian approach discussed above [53,

chap. 10]. Within the full Bayesian framework, one example is reference [62], which deals with hyperparameter

estimation for image restoration using a MCMC algorithm. Inthe context of regularization, the empirical Bayesian

approach is discussed to obtain estimates of hyperparameters such asα2 andβ2 in [33] in a quite general setting, in
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[34, 35, 37] as the “evidence” method and in [39, 40] as the “marginalized MAP (of type 3)” method. In particular,

reference [37] handles the case of a Gaussian likelihood anda Gaussian assumption on the prior pdf, as studied

here. Some early references tackling a similar issue are [41] in the context of spline smoothing and [42]. References

that explicitly give an estimate of the regularization parameterη2 are [43] and [44] for a Bayesian interpretation of

the latter. Yet, reference [63] also provides a Bayesian interpretation of regularization and a maximum likelihood

estimation of the regularization parameter, which is compared to the GCV method in the context of image deblurring.

3.1. The Bayesian program

In the empirical Bayesian approach,the interpretation of the regularization parameter as a NSRsuggests estimating

it directly from the data.As discussed above,different strategies are conceivable. A first one is to estimateη2 indirectly

as the ratio of the most probable values ofα2 andβ2 given the measurements, i.e.

η̂2
Joint =

β̂2

α̂2
where (α̂2, β̂2) = Argmax[α2, β2|p]. (15)

The above strategy has already been briefly described in Ref.[45]. A second strategy, which is presented here for the

first time, is to find directly the marginal posterior pdf ofη2 and then to select that value with maximum probability

of occurrence, i.e.

η̂2
MAP = Argmax[η2|p] where [η2|p] =

∫

[α2, β2 = α2η2|p]

∣
∣
∣
∣
∣
∣

∂β2

∂η2

∣
∣
∣
∣
∣
∣
dα2 (16)

with |∂β2/∂η2| = α2 standing for the Jacobian of the change of variables (α2, β2) 7→ (α2, η2). This solution is more in

the “Bayesian spirit”since it integrates out the intermediary variableα2 when it is not of direct interest.

The two strategies are addressed hereafter in a unified treatment, for they require the same “ingredients”: first the

evaluation of the likelihood function [p|α2, β2], second the definition of the prior [α2, β2], and third the evaluation of

the posterior pdf [α2, β2|p]. The likelihood function [p|α2, β2] is obtained from marginalizing the likelihood function

[p|c, β2] of section 2.2.1 overc, which is nothing else than the evidence defined by Eq. (10).This is obtained

by substituting Eqs. (5) and (8) into Eq. (10). For the detailed mathematical treatments, the reader is referred to

Appendix B or Refs. [47–50].

The Bayesian framework offers the possibility of including any prior information the experimenter may have on

eitherα2 or β2 before the measurements are taken, practice that is known asa hierarchical Bayes approach [53].

Although the Bayesian literature is very vast on how to defineprior pdf’s, first principles are considered here to

distinguish two plausible scenarii.

1. Scenario 1: In the simplest case one may simply set [α2, β2] ∝ 1 (∝ stands for the “proportional” sign) in Eq.

(19) meaning that all outcomes are assumeda priori equiprobable, choice that may be viewed as the “worst

case”. Then the empirical Bayesian approach is basically equivalent to maximum likelihood.

2. Scenario 2: In a more luckily configuration, the experimenter may have some vague knowledge about the ex-

pected noise energyβ2, for instance related to the known instrumentation dynamics, preliminary measurements

10



(e.g. with the acoustic sources switched off), or known sensor sensitivity. Note that such types of errors do not

cover modeling errors which are unavoidable in model (1) andmay even predominate [58]. A simple choice is

therefore to endow the noise energy with an inverse Gamma pdfwhich enforces positive values:

[α2, β2] ∝ [β2] = G−1(a,b) ∝ β−2a exp(−bβ−2), a ≥ 0,b ≥ 0, (17)

where parametersa andb are tuned to set the central position and width of the pdf. Theinverse Gamma choice

is motivated by the fact that it leads to analytically tractable expressions when combined with a Gaussian

likelihood, to which it is a conjugate pdf [48]. Particular choices are (a = 1,b = 0) when all outcomes ofβ2

are assumeda priori equiprobable on a logarithmic scale [59] and (a = 0,b > 0) for the Maximum Entropy

solution when solely the mean valueE{β−2} = b−1 is imposed. In general, the mean of the inverse Gamma is

E{β2} = b/(a − 2), a > 2, its mode isb/a, and its variance Var{β2} = b2/(a − 2)2(a − 3), a > 3. Therefore, if

E{β2} and the coefficient of variationγ = Var{β2}−
1/2/E{β2} are both knowna priori, the inverse Gamma is to be

parameterized as

a = 3+ γ−2 (18a)

b = (1+ γ−2)E{β2}. (18b)

By way of an example, a phase error mismatch on microphonei with standard deviationσ will produce multi-

plicative noise,p(r i) = p0(r i) exp(jφ), wherep0(r i) stands for the noise-free pressure value; assumingσ small

enough,p(r i) ' p0(r i) + νi with νi = jp0(r i)φ. Thus, one hasE{β2} = |p0(r i)|2σ2 ' |p(r i)|2σ2; finally, given a

user-defined value ofγ, a = 3+ γ−2, andb = (1+ γ−2)|p(r i)|2σ2.

Other scenarii with prior knowledge on the expected source energyα2 are less plausible and will not be considered

in this paper, although the Bayesian framework perfectly allows to take them into account. The next results are derived

for the case of scenario 1, which is the case employed in the numerical simulations and experimental set-up in the

following sections. Results for the case of scenario 2 may bereadily obtained by substituting for the inverse Gamma

pdf in Eq. (17) into Eq. (19) and proceeding similarly as in the case of scenario 1.

3.2. First strategy: Joint probability density function ofnoise and source energies

Given all the above preliminaries, one is now in a position toevaluate the joint pdf of (α2, β2) given the measure-

ments. Using again the Bayes’ rule it is written as:

[α2, β2|p] ∝ [p|α2, β2][α2, β2], (19)

where the setting [α2, β2] ∝ 1 is considered from now on. The maximization of the above equation, that is, the MAP

estimate, leads to the following cost function to be minimized with respect toα2 andβ2

JJoint(α
2, β2) =

M∑

k=1

ln
(

α2s2
k + β

2
)

+

M∑

k=1

|yk|
2

α2s2
k + β

2
, (20)

11



as conveniently expressed in terms of the eigen-elements (13) and whereyk is thek-th element of vector

y = UH
Ω
−1/2
n p, (21)

that is the projection of the measurements on the array subspace. One peculiarity is that the sufficient statistics

arising in Eq. (20) is no longer the vector of complex pressures,p, but actually the covariance matrix of the latter,

ppH – i.e. it is the only measurement required to compute|yk|
2 in Eq. (20). This leaves the interesting option of

averaging together several measurements in order to get more accurate estimates whenever the acoustical field is

statistically stationary. Specifically, let us assume thatmultiple snapshots{p j ; j = 1, ...,N} are available, for instance

as a result of segmenting the time series into short-time blocks before applying the Fourier transform. The only

modification is in the likelihood function (5) where the joint pdf [{p j ; j = 1, ...,N}|c; β2] should be considered instead.

Assuming independent snapshots, the latter is the same as the product of individual pdf’s, i.e.
∏N

j=1[p j |c; β2] =
∏N

j=1NC(Hc j , β
2
Ωn). This results in all the same equations as obtained hitherto, but with|yk|

2 replaced by its average

on N snapshots,

〈|yk|
2〉 = uH

k Ω
−1/2
n





1
N

N∑

j=1

p jpH
j





︸           ︷︷           ︸

Spp

Ω
−1/2
n uk, (22)

whereSpp stands for the (empiric) correlation matrix of measurements anduk for thek-th column of matrixU. This

general configuration will be assumed from now on, a special case beingN = 1 when no averaging is requested.

The minimization of cost functionJJoint(α2, β2) is an easy exercise. Let us first introduce the change of variables

(α2, β2) 7→ (α2, η2). Then, setting the derivative of

JJoint(α
2, η2) =

M∑

k=1

ln
(

s2
k + η

2
)

+
1
α2





M∑

k=1

〈|yk|
2〉

s2
k + η

2



 + M lnα2 (23)

with respect toα2 to zero, one immediately gets the MAP estimate

α̂2 =
1
M





M∑

k=1

〈|yk|
2〉

s2
k + η

2



 . (24)

Unlike the source energy, there is no closed-form solution for the regularization parameterη2. Substituting for ˆα2 in

JJoint(α2, η2), one then has

η̂2
Joint = Argmin JJoint(η

2) (25)

with

JJoint(η
2) , JJoint(α̂

2, η2) − M

=

M∑

k=1

ln
(

s2
k + η

2
)

+ M ln α̂2. (26)

12



This is a 1-D minimization problem which may be easily carried out starting with a rough grid search method fol-

lowed by a refined gradient descent or dichotomy method. In turn, the MAP estimate of the noise energy, if needed,

is β̂2 = α̂2 × η̂2
Joint.

3.3. Second strategy: Marginal probability density function of the regularization parameter

As discussed in section 3.1, another laudable strategy to estimate the regularization parameter from the data is to

directly find its posterior pdf, [η2|p], without requiring the intermediate estimations of the noise and source energies,

α̂2 and β̂2. The exact expression of [η2|p] is carried out by marginalization of the joint pdf [α2, β2|p] in Eq. (19).

The mathematical steps describing how this is carried out ispresented in Appendix C for the interested reader. The

following MAP estimate of the regularization parameter is obtained:

η̂2
MAP = Argmin JMAP(η2) (27)

with

JMAP(η2) ,

M∑

k=1

ln
(

s2
k + η

2
)

+

(

M −
2
N

)

ln α̂2

= JJoint(η
2) −

2
N

ln
(

α̂2(η2)
)

, (28)

where it is emphasized in the second line that ˆα2 is a function ofη2, as given in Eq. (24), andN is the number of

snapshots as defined prior to Eq. (22). The estimate of the regularization parameter ˆη2
MAP is returned as the minimum

of cost function (28).

3.4. Discussion

Equations (28) and (26) are important results of the (empirical) Bayesian approach undertaken in this paper. Thus,

before one proceeds further, several remarks are in order atthis juncture.

3.4.1. Comparison of strategies

It is anticipated that the two estimates ˆη2
Joint andη̂2

MAP found in sections 3.2 and 3.3 must be closely related – since

JMAP = JJoint− (2/N) ln α̂2 according to Eq. (28) – although they have no reason to beidenticalfor the MAP estimate

of a ratio is generally not equal to the ratio of the MAP estimates. Indeed, since−(2/N) ln α̂2 is a monotonically

increasing function ofη2, it comes that

η̂2
MAP ≤ η̂

2
Joint, (29)

meaning that ˆη2
MAP in general yields a “less regularized” solution than ˆη2

Joint. In addition, the term−(2/N) ln α̂2 acts as

a penalty that forbids solutions (i.e. source fields) with zero energyα2. This is confirmed by the asymptotic behavior

of JJoint andJMAP asη2→ ∞, given as follows:

JJoint(η
2) ∼ CM, asη2→ ∞ (30a)

JMAP(η2) ∼
2
N

ln η2, asη2→ ∞, (30b)
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Figure 2: In most practical situations ˆη2
Joint and η̂2

MAP are found nearly equal, at least when the numbers of sensors orsnapshots is large enough

(see left panel) . One exception is when the SNR is so poor thatJJoint tends to see only noise, thus rejecting its minimum to infinity and returning

an unbounded value of the regularization parameter. Such a situation is forbidden byJMAP which, by construction, advantageously forces a finite

value ofη2 (see right panel).

with C a constant. Notice thatJJoint tends to a constant whileJMAP still grows to infinity. This property might be

advantageous in some low SNR configurations whereJJoint tends to “see” only noise and thus returns an infinite value

for η̂2
Joint.

However, in most experimental instances it has been verifiedby the authors that ˆη2
Joint andη̂2

MAP are found nearly

equal, especially when the productMN of the numbers of microphones and snapshots is large. This isformally

justified by the fact that

JMAP(η2)
︸    ︷︷    ︸

∼O(M)

= JJoint(η
2)

︸    ︷︷    ︸

∼O(M)

−
2
N

ln α̂2

︸  ︷︷  ︸

∼O(N−1)

−−−−−−→
MN→∞

JJoint(η
2) (31)

whereO means “on the order of”. Figure 2 illustrates the above remarks by means of an example selected from the

simulations to be presented in Sec. 6.

3.4.2. A posteriori estimate of the signal-to-noise ratio

Following the discussion in Sec. 2.3, it is interesting to remark that an estimate of the signal-to-noise ratio (SNR)

a posteriorimay be obtained from ˆη2
Joint or η̂2

MAP. Taking into account the propagation from the source field tothe

microphone array it follows that

ˆSNR=
1

η̂2M

M∑

k=1

s2
k, (32)

whereM is the number of microphones andsk the singular values as defined in Eq. (13). The above estimatemay be

compared, for instance, to a measured or expected signal-to-noise ratio over the array of microphones.
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3.4.3. Accounting for the inverse Gamma prior on the noise energy

For the sake of completeness, we briefly provide hereafter the modified cost functions to account for the inverse

Gamma prior on the noise energyβ2. Omitting the intermediate steps, Eq. (20) is now given as

JJoint(α
2, β2) =

M∑

k=1

ln
(

α2s2
k + β

2
)

+

M∑

k=1

〈|yk|
2〉

α2s2
k + β

2
+

a
N

ln β2 +
b
N
β−2, (33)

with a andb the parameters of the inverse Gamma pdf in Eq. (17). Introducing the change of variables (α2, β2) 7→

(α2, η2) and minimizing with respect toα2 gives

α̂2 =
1

M + a
N





M∑

k=1

〈|yk|
2〉

s2
k + η

2
+

b
Nη2



 . (34)

The cost function to be minimized with respect toη2 then follows

JJoint(η
2) =

M∑

k=1

ln
(

s2
k + η

2
)

+

(

M +
a
N

)

ln α̂2 +
a
N

ln η2, (35)

from which the modifiedJMAP(η2) directly follows from the relation in Eq. (28).

3.5. Properties

The Bayesian estimators of the regularization parameters introduced in the former section happen to enjoy several

interesting properties which are listed in this subsection.

1. Uniqueness of solution.

Proposition 1. The cost functionsJJoint(η2) andJMAP(η2) in Eqs.(26)and(28)have at most one minimum with

probability one when the product MN of the numbers of microphones and snapshots becomes large.

Proof. : see Appendix D

This proposition is of fundamental importance, since it establishes the robustness of the proposed regularization

strategy: as opposed to most alternative strategies, it guaranties that the estimation ofη2 will not be trapped into

local minima (as might happen with GCV or the L-curve for instance). An explanation of this nice property

is to view exp{−JMAP(η2)} as proportional to a unimodal pdf. Note that Property 1 is also valid for (small)

finite values ofMN with overwhelming probability – see Appendix D – a fact that has always been observed

by the authors in a large variety of different configurations. However, Proposition 1 might allow for JJoint(η2)

to possibly have no minimum at all, a situation likely to reflect inconsistency in model (1) or its associated

likelihood function (5) (e.g. presence of strong modeling errors). This property is presented for the first time

and thus consists one of the novel results in this paper.

2. Ease of implementation.The proposed regularization strategy leads to simple implementation. First, the explicit

evaluation of the inverse problem is to be evaluated only once through the calculation of the eigen-elementsU,
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V, and{sk; k = 1, ...,M}, required in Eq. (14). The only extra work is to minimizeJJoint(η2) or JMAP(η2) to which

Proposition 1 allows the use of efficient numerical algorithms. Second, the regularization strategy applies just

as well to measurement setups that record either the complexdatap or solely their correlation matrix,Spp, since

the latter is the sufficient statistics entering into the evaluation ofη2 as discussed in section 3.2.

3. Physical insight.In contrast to other approaches, the proposed algorithm returns both an estimate of noise and

source energies,α2 andβ2, in addition to their ratio. This may provide useful physical insight into the final

solution of the inverse acoustic problem, for instance to test for the presence of modeling errors by comparing

the value ofβ̂2 to the maximum of the expected measurement noise level, or ifsome figures of merit such as

the Akaike Information Criterion or Bayesian Information Criterion are to be computed to test the validity of

model (1) [64].

4. Evaluation of sensitivity to regularization.Finally, the probabilistic apparatus attached to the determination of

the regularization parameter allows the propagation of estimation errors to any acoustical quantity of interest.

In other words, it provides a definite answer to the crucial question: “how sensitive is the reconstructed source

field with respect to the setting of the regularization parameter”. As far as the authors know, this question has

rarely been answered despite of its considerable importance and the criticity of regularization in practice. Due

to its relevance, this point will be further investigated insection 5.

4. Physical interpretations in terms of energy

In contrast to most regularization strategies used in inverse acoustics, the proposed Bayesian solution is offspring

of a formal probabilistic approach. Very interestingly, one interpretation stems from the conservation of energy (1st

thermodynamic principle).

4.1. Energy balance

One simple way to understand the tenants of the proposed regularization strategy is to consider Eq. (21) that yields

the projection,{yk; k = 1, ...,M}, of the data onto the array subspace. Taking the expected value of energy with respect

to the prior source coefficients and measurement noise, one gets

E{〈|yk|
2〉} = uH

k Ω
−1/2
n E{Spp}Ω

−1/2
n uk

= uH
k Ω

−1/2
n

(

α2HΩcHH + β2
Ωn

)

Ω
−1/2
n uk

= α2s2
k + β

2, k = 1, ...,M, (36)

where the last line was arrived at after using Eq. (13). This equation establishes the energy balance between the

expected energy of measurements before they are actually collected and the source and noise energies,α2 andβ2.

In practice,E{〈|yk|
2〉} is not available, however the set of equations (36) could still be solved approximately after

substituting it by the actual measurements〈|yk|
2〉. Thus least squares could be a solution to get the “slope”α2 and the
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Figure 3: The estimation of the source and noise energies amounts to finding the slope and intercept, respectively, of the regression line passing

through the cluster of measurement points
{

(s2
k; 〈|yk|

2〉); k = 1, ...,M
}

complying with the conservation of energy lawE{〈|yk|
2〉} = α2s2

k + β
2. To

improve visualization the right panel shows the plot of the natural logarithm of both the singular valuess2
k and the coefficients|yk|

2.

“intercept”β2, but with no guarantee of positiveness of the latter (quadratic) values. A much better strategy would be

to estimate these parameters from the Maximum Likelihood principle after recognizing thatyk has a complex Gaussian

pdfNC(0, α2s2
k + β

2). When the prior is uniform, this actually happens to boil down to the MAP estimates of (25).

This is illustrated in Fig. 3 by way of an example extracted from simulations to be presented in Sec. 6.

5. How sensitive is the acoustic inverse problem to regularization?

As mentioned several times in the paper, the art of regularization is as risky as essential for successfully solving

the acoustic inverse problem. Therefore, it is crucial to assess the effect small modifications in the regularization

parameter will have on the reconstructed source field. In short, the question to be addressed is how sensitive the

reconstruction is to the actual setting of the regularization parameter? As far as the authors known, this issue has

never been investigated in the present field of interest despite its practical importance. One refraining difficulty is that

η2 intervenes in a very non-linear way into the estimation ofq(r ).

Because the Bayesian frameworks treatsη2 as a random variable endowed with a pdf, it offers a rather unique

answer to the present issue.

5.1. Exact solution from Markov Chain Monte Carlo(MCMC) sampling

The posterior pdf [η2|p] found in Proposition 6 fully answers the goal of quantifying the uncertainty stemming

from regularization: by allowing to sample values ofη2, it makes possible to propagate the variability due to regu-

larization to any acoustical quantity of interest functionally depending on the regularization parameter, such as the

source field, its quadratic flux, the acoustical intensity, or the acoustical power. Since such a pdf does not seem to

pertain to a standard family, one has to resort to MCMC methods, such as the popular Metropolis-Hasting algorithm,

to sample it [53]. This is surely a minor price to pay for exactness.
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5.2. Gaussian approximation

Should one not require the full posterior pdf [η2|p] but simply characterize it by its variance, then the following

simple Gaussian approximation may be useful:

Proposition 2.

[η2|p] ≈ N
(

η̂2;σ2
)

with σ2 =

(

d2JMAP(η2)
(dη2)2

)−1

η2=η̂2

, (37)

η̂2, andJMAP(η2) given in Eqs.(27)and (28), respectively.

Proof. : seeAppendix E

The second derivative ofJMAP(η2) arising in Eq. (37) may be evaluated analytically or, more simply, numerically. In

the case where the productMN is large (so that the convergence in Eq. (31) holds true),σ2 is given in closed-form by

Eq. (D.2) of Appendix D. Such an approximation has the benefitof ease of implementation, for it requires little more

than a random generator of Gaussian variables to propagate errors stemming from regularization to any reconstructed

acoustical quantity.

5.3. Cramer-Rao lower bound

Interestingly enough, the inverse of the expected value ofσ−2 in Proposition 2 returns to the Cramer-Rao lower

bound [59] of the regularization parameterη2, that is the lowest possible variance that can be attained byany unbiased

estimate ˆη2. Specifically, when the productMN of the numbers of sensors and snapshots is large,

Proposition 3.

Var
{

η2|p
}

≥
1

E

(
d2JMAP(η2)

(dη2)2

)

η2=η̂2

−−−−−−→
MN→∞

1

(1− B2)
∑M

k=1

(

1
s2
k+η

2

)2
(38)

where

B2 =

(
∑M

k=1
1

s2
k+η

2

)2

M
∑M

k=1
1

(s2
k+η

2)2

. (39)

Proof. : see Appendix F

FactorB2 entering into Eq. (38) is to be interpreted as a measure of bandwidth of the sequence (s2
k + η

2)−1; indeed,

1
M
≤ B2 ≤ 1, (40)

where the lower bound is reached when all but one of the (s2
k + η

2)’s are nil and the upper bound when all (s2
k + η

2)’s

are identical. This latter situation is especially critical for B2 = 1 implies an infinite variance in Eq. (38): practically,

it corresponds to the experimental configuration where thesameequation〈|yk|
2〉 ≈ α2s2

k + β
2, k = 1, ...,M is observed

M times, thus making it impossible to estimate the two unknownsα2 andβ2 and their ratioη2. This is fully compliant

with the interpretation of section 4.1. At the same time, this particular configuration also corresponds to a well-posed

inverse problem where virtually no regularization should be required, thus lessening the effect of a large variance

aroundη2 = 0 on the reconstructed acoustical quantity of interest.
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6. Numerical comparison to the state-of-the-art methods inacoustics

In order to examine the performance of the Bayesian regularization criterion, numerical experiments of acoustic

inverse problems are presented in this section. Two reference papers on this field are selected as benchmarks [22,

24], illustrating a wide range of source reconstruction configurations. In both papers, the performance of GCV and

the L-curve was compared in the framework of numerical acoustic simulations. It was shown that the behavior of

both methods varies significantly with the simulation parameters (i.e. level of measurement noise, frequency or

distance between microphone array and source surface) and no prevailing method could be indicated. Our aim here

is to check the effectiveness of the proposed Bayesian regularization criterion applied to the cases investigated in

the aforementioned references. For that purpose, the geometry of the acoustic problem treated in each reference is

reproduced and is briefly recalled in the next subsections.

The direct problem employed in the simulations has been described in Sec. (2) and a free-field propagation is

assumed, with Green’s function given by:

G(r i |r ) =
e−jk‖r i−r‖

4π‖r i − r‖
, (41)

wherek = ω/c is the acoustic wavenumber,ω is the angular frequency andc is the speed of sound. The solution of the

inverse problem for the source coefficients (̂c) is given by Eq. (14) and the different parameter selection methods will

be used to adjust the regularization parameterη2 therein. The implemented cost functions for the GCV and L-curve

methods are exactly the same as those described in references [22, 24], and a detailed analysis of each can be found

in refs. [18, 65].

An indicator based on the knowledge of the exact solution of the inverse problem (c) is obtained by computation

of the mean squared error (MSE) [22] betweenc and solutions for all potential regularization parameters. A cost

function can be written as:

JMS E = ‖ĉ(η2) − c‖. (42)

The optimal regularization parameter is thus returned by the minimum of the cost function:

η2
MS E = Argmin JMS E(η

2). (43)

This indicator illustrates the “best we can do” scenario andthe effectiveness of each method is evaluated as the relative

error to the optimal solution, as follows:

εBA =
‖ĉBA − ĉMS E‖

‖ĉMS E‖
, εLC =

‖ĉLC − ĉMS E‖

‖ĉMS E‖
, εGCV =

‖ĉGCV − ĉMS E‖

‖ĉMS E‖
, (44)

where, from now on, we use the notation BA for the presented Bayesian criterion and LC for the L-curve. The noise

term entering on the right hand side of Eq. (3), used to simulate the acoustic pressure, consists of multiplicative and

additive perturbations, with signal-to-noise ratio (SNR)ranging from 40 dB to 6 dB. The noise term corresponding to

the i-th microphone is given by:

νi = 10−SNR/20





γejθp0(r i) + δe
jφ

√
∥
∥
∥p0

∥
∥
∥

2

M





, (45)
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whereγ andδ are zero mean Gaussian random variables withVar(γ) = Var(δ) = 1, θ andφ are random variables

uniformly distributed between 0 and 2π, p0 is the vector of noise-free pressure andp0(r i) its i-th component. The

employed frequency band ranges from 100 Hz to 2500 Hz and the simulations are carried over 500 random trials of

measurement noise for each frequency and SNR. A MATLABR© implementation of the codes used for the simulations

is available online [66].

6.1. Case 1: Square system(M = K)

The geometry of this problem is reproduced from Ref. [22] andis sketched on the left panel of Fig. 4. A planar

array of 9×9 microphones is placed atzh from a vibrating surface modeled as a distribution of 9×9 monopole sources.

The inter-source spacing is set to be identical to the inter-microphone spacing (rs = rm). Simply one point source is

placed at the center of the source surface with volume velocity equal to unity. The condition number of the transfer

matrix for this scenario is shown on the right panel of Fig. 4 for three different distances to the source plane. We

observe that as the distance is increased, the conditioningof the matrix is increased (especially at low frequencies)

and that the problem is mainly ill-conditioned at low frequencies. The results of the simulations are given by the
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Figure 4: (a) Geometry of the problem for the first scenario, showing the discretized source surface, the microphone array and the simulated point

source placed at the center of the surface. (b) Condition number for three different distances from the source plane (zh).

average of the indicator (Eq. (44)) over all random trials. Figure 5 shows the results for three distances from the array

to the source surface respectively equal tozh = rs (first row), zh = 5rs (second row) andzh = 10rs (third row), with

rs = rm = 12 cm. Note that the results for the non-regularized case (NR) are added on the last column. We observe

that GCV gives satisfactory results when the array is placedclose to the source, however, when the microphone array

is moved farther away (increasing on the condition number) it provides very poor results for a wide frequency range

and all levels of noise, showing that GCV is very sensitive tothe conditioning of the problem. In fact, although GCV

returns reasonable regularization for some noise ensembles at those range, it occasionally fails to do so and this failure

leads to completely anomalous solutions, because the regularization parameterη2
GCV is too small. This is confirmed by

the histogram plot shown in Fig. 6, which corresponds to the 500 trials for a SNR of 30 dB, frequency of 1000 Hz and

distantzh = 5rs from the source surface. It shows the ratio between the regularization parameter estimated by each

20



method and the optimal one. The closer the ratio is to 1, the better is the estimate. We note that the GCV’s histogram

presents a tail towards very small values, which means a severe underestimation of the regularization parameter. This

behavior was observed for all range of SNR and frequencies which GCV gives high relative errorsεGCV.

The results of the L-curve do not present a common trend for the three studied cases, however it is clearly not

effective for high levels of measurement noise (low SNR) and at very low frequencies. On the other hand, the results

returned by the Bayesian regularization criterion are satisfactory for the whole set of tested acoustical configurations,

with errors rarely exceeding 20% of the optimal MSE solution. We remark that the results returned by the cost

functionsJJoint andJMAP were very similar, therefore just the case ofJJoint is presented here.
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Figure 5: Average value of the relative error to the optimal (MSE) solution over 500 realizations of measurement noise. Eachrow corresponds to a

given distance from the array to the source surface. First row: zh = rs, second row:zh = 5rs and third row:zh = 10rs.

6.2. Case 2: Under-determined system(M � K)

The geometry of the second case is reproduced from Ref. [24] and is depicted in Fig. 7. A planar array of

6×5 microphones is placed at a distancezh from a source surface which is modeled by a grid of 28×23 monopole-

like sources. The inter-microphone and inter-source spacings are respectively set to 10 cm and 2 cm in bothx andy

directions. This configuration models an under-determinedscenario, with the number of measurement positions much

lesser than the number of unknown source coefficients. In this case, the simulation is done by randomly placing 3

monopoles on the source distribution and assigning random complex strength to each of them. The simulated acoustic

pressure is then perturbed with the noise model given by Eq. (45). The same indicator (relative error to the MSE

solution) is used and the results are presented in Fig. 8. We note that the GCV presents similar behavior to the
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Figure 6: Histogram plot of the ratio between estimated and optimal regularization parameters for Bayesian regularization: (a) BA, (b) L-curve and

(c) GCV. They correspond to 500 realizations of measurement noise with a SNR of 30 dB, frequency 1000 Hz and distance source-arrayzh = 5rss.

first scenario, producing satisfactory results when the array is placed relatively close to the source (except at low

frequencies and low SNR) and poor results when it is moved farther away (higher condition number). The L-curve

seems to treat this case better than the previous one except at very low frequencies and a frequency band depending

on the array-source distance. Again, the Bayesian regularization criterion is able to produce satisfactory results for

all source-array distances and over the full range of SNR levels and frequencies. We can notice, however, that the

relative errorεBA at high frequencies and high SNR are slightly greater than the errors for the non-regularized (NR)

and L-curve (LC) cases. It is apparent that no regularization is the best option at those ranges, indeed, the L-curve had

no corner for those cases and the employed algorithm appliesno regularization. On the other hand, the Bayesian cost

function still exhibits a minimum and the solution is slightly oversmoothed. Although, as it will be shown in the next

section, introducing a small amount of regularization whenthe problem is not very ill-conditioned (high frequencies

on the simulations) has a small impact on the reconstructed acoustic quantities.
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Figure 7: (a) Geometry of the problem for the second scenario.It shows the microphone array, the discretized source surface and 3 point sources

randomly placed at the source surface.; (b) Condition number of the transfer matrix for distancezh equals to 10, 15 and 20 cm.
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Figure 8: Average value of the relative error to the optimal (MSE) solution over 500 realizations of measurement noise. Eachrow corresponds to a

given distance from the array to the source surface. First row: zh = 10 cm, second row:zh = 15 cm and third row:zh = 20 cm.

7. Estimation of confidence intervals

As previously stated in Sec. 5, the Bayesian framework beinga probabilistic approach, it allows one to compute

parameters of the pdf’s assigned to the problem unknowns. One particularly attractive is the posterior pdf of the

regularization parameter [η2|p], whose variability can be propagated to any acoustic quantity of interest in order to

provide confidence intervals, for instance. Two possible ways of performing this task were discussed in Sec. 5,

one by a simple Gaussian approximation of the posterior [η2|p] and a second by its exact evaluation using MCMC

methods. Both procedures are applied here by means of an example selected from the scenario described in Sec. 6.1.

It corresponds to the configuration with the array placed at adistancezh = rs from the source surface and with a SNR

of 30 dB. A point estimate of the regularization parameter delivered by the Bayesian criterion is shown in Fig. 9(a)

along with its variability (filled gray area) estimated by a MCMC procedure. Figure 9(a) also shows, in dashed black

lines, the confidence interval obtained by approximating the posterior pdf [η2|p] by a Gaussian distribution. The latter

is obtained by numerical evaluation of the second derivative in Eq. (37), which is related to the variance (σ2) of the

distribution. We can note that the intervals given by the Gaussian approximation agree well with those computed by

MCMC up to approximately 800 Hz. Above those frequencies theapproximation of the posterior [η2|p] by a Gaussian

distribution does not hold anymore, illustrating the limits of this approximation. The discontinuities above 1500 Hz

are related to oscillations on the condition number of the transfer matrix used in this example (see right panel of Fig.

4 for zh = rs), since the regularization criterion alternates between aregularized and non regularized solution.
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The estimate of source coefficients is obtained by Eq. (14), with thea priori assumption thatΩn = I andΩc =

I , that is, no additional information concerning the spatialcorrelation on either the measured field or the source

field is introduced, practice that is implicit to deterministic methods. We emphasize the fact that these area priori

assumptions, and thus do not impede one to obtain a reconstructed source field having a degree of spatial correlation

between sources. The basis functions stemming from a singular value decomposition of the propagation operator (see

ref. [45]) in Eq. (41) is then used to recover the source field as given by Eq. (2).An integration over the source

surface at each frequency gives the source spectrum (see Fig. 9(b)) for the Bayesian regularization criterion (red) and

the optimal one (black). The variability of the regularization parameter is then propagated to the reconstructed source

field as shown by the filled gray region in Fig. 9(b). It is interesting to note that the reconstructed volume velocity

is much more sensitive to the setting of the regularization parameter at low frequencies. Indeed, a small variation on

the regularization parameter at low frequencies leads to higher uncertainties on the reconstructed source spectrum.

On the other hand, a large variation onη2 at higher frequencies had little effect on the reconstructed quantity. This

analysis can be further extended to the acoustic power integrated over the source surface, as shown in Fig. 9(c). We

can see that the estimated acoustic power using the Bayesianregularization criterion is fairly close to the optimal

(MSE) solution. Moreover, we note narrow confidence intervals on the acoustic power (± 0.5 dB), meaning that small

variations on the regularization parameter generates small uncertainties on this quantity. We remark that this resultis

not to be interpreted as if the regularization was not important to the reconstruction, it actually shows how sensitive

is the reconstruction of these acoustic quantities to smallvariations around the point estimate of the regularization

parameter.
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Figure 9: (a) Point estimate of the regularization parameterη2 ( ) with confidence intervals estimated by a MCMC procedure (shaded region)

and by a Gaussian approximation ( ). (b) The reconstructed source spectrum using the Bayesianregularization criterion ( ) with a 95%

confidence interval (shaded region) and the optimal MSE solution ( ). (c) Global acoustic power as integrated over the source surface for the

Bayesian regularization criterion ( ) with a 98% confidence interval (shaded region) and the optimal (MSE) one ( ).
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8. Experimental results

This section illustrates an application of the Bayesian regularization scheme in an experimental set-up.Before

describing the experimental set-up we briefly summarize thea priori assumptions in the model. Similarly to the

previous simulation examples, we assume that there is noa priori spatial correlation over the measured pressure field,

that is,Ωn equals the identity matrix. Other structures forΩn could be modeled or even measured, for instance, by

performing a measurement with the physical sources switched-off. This idea has been tested in Ref. [45], although

in terms of qualitative results the gain was shown to be marginal. The choice of a prior structure toΩc (i.e. spatial

correlation coefficients of sources) is less obvious in practical cases in which little information concerning the sources

is available before making the experiments. Based on the observation that physical sources are often spatially compact,

one could for instance, introduce ana priori that points on the source field close to each other are correlated, such

as to enforcea priori the continuity of the source field. We finally stress that the setting ofΩn or Ωc is strongly

dependent on the practical application. For instance, in aeroacoustics one could use an exponential decay structure for

the spatial correlation of the background noise, in case thelatter is originated by a turbulent flow. A complete study

on the influence of different settings forΩn andΩc are outside the scope of this paper and is left as a perspective of

future work. A reference on the modeling of covariance matrices is [67]. The results presented hereafter are obtained

with the simple settingΩc = I , i.e., noa priori spatial correlation is introduced.

The source of interest is a driver unit connected to a piping system with three outlets (diameter 2.2 cm), as shown

in Fig. 10. This source is a good approximation of three correlated monopoles in the frequency range of interest

(200-2000 Hz). A planar array of 6×5 microphones (inter-microphone spacing of 10 cm) is placedat 20 cm from

the plane comprising the three outlets. A fictitious source surface (on the plane of outlets) with dimensions 80×70

cm2 is discretized with a constant spacing of 4 cm. The virtual sources are modeled as point sources and the Green’s

function given in Eq. (41) is used to compute the propagationto the array of microphones. Equation (14) is again

used to solve for the source coefficients with the regularization parameterη2 set by the different approaches. The

experiment was carried out in a semi-anechoic room of dimensions 5×3.40×2 m3 and the source was driven with

white random noise. The particle velocity and the sound pressure were measured at 5 cm from each opening using

a Microflown p-u intensity probe, allowing an estimation of their acoustic power. The radiated acoustic power is

estimated by integrating the measured acoustic intensity over a spherical surface of radius 5 cm and centered at each

opening.

Figure 11 shows the reconstructed source field (volume velocity) at 945 Hz using the regularization parameter

returned by the Bayesian criterion (BA), the L-curve and GCV. It can be seen that GCV fails to compute a reasonable

solution, on the other hand, the reconstruction obtained bythe L-curve and the Bayesian criterion is fairly good. The

cost function at this frequency for each method is shown in Fig. 12. We notice that the L-curve and the Bayesian

criterion yield similar regularization parameter, yet in amore convincing way for the latter (note the presence of local

maxima on the L-curve’s curvature). We can also observe thatthe minimum of the GCV function (not visible with
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Figure 10: Acoustic source of interest.

the employed scale) is located towards smaller values ofη2, which led to the undersmoothed solution shown in Fig.

11 (right hand side). The reconstructed source field at 650 Hzis shown in Fig. 13. In this case, the GCV and the

Bayesian criterion yield similar results, on the contrary,the L-curve criterion led to a rather over-smoothed solution.

We remark that at this discrete frequency only two of the three sources radiate significant energy, as shall be confirmed

by the measurements to be presented next (see Fig. 16). The cost functions corresponding to this case are represented

in Fig. 14. We note that GCV and the presented Bayesian criterion returned similar regularization parameters. On the

other hand, the L-curve’s curvature exhibits two local maxima very close to each other in level. A better alternative in

this particular case, would rather be to select the local maximum slightly on the left of the global maximum.
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Figure 11: Reconstructed source field (volume velocity) at 945 Hz corresponding to each regularization criterion. (a) Bayesian regularization (BA);

(b) L-curve and (c) GCV. A dynamic range of 15 dB is used for all.

The acoustic power radiated by the reconstructed source field was computed in a similar manner as in Ref. [68]. It

essentially consists of summing the power radiated by each virtual point source in isolation and a term that is the power

generated by each source in working against the induced pressure generated by neighbor sources (see, for example,

Ref. [69]). Figure 15 compares the reconstructed global acoustic power (as integrated over the source surface) to the

referencep-u measurements. As can be seen, the GCV results diverge at somefrequencies, which are related to a

severe underestimation of the regularization parameter. For the L-curve, although the results are globally satisfactory,
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Figure 12: Cost functions associated to each regularization criterion at the frequency of 945 Hz. (a) the Bayesian regularization criteria. (b)

curvature of the L-curve (whose corner is the point with maximum curvature). (c) the GCV cost function.
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Figure 13: Reconstructed source field (volume velocity) at 650 Hz corresponding to each regularization criterion. (a) Bayesian regularization (BA);

(b) L-curve and (c) GCV. A dynamic range of 15 dB is used for all.
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Figure 14: Cost functions associated to each regularization criterion at the frequency of 650 Hz. (a) the Bayesian regularization criteria. (b)

curvature of the L-curve (whose corner is the point with maximum curvature). (c) the GCV cost function.
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we notice few discontinuities for instance around 650 and 970 Hz. Further investigation has shown that they are due to

alternations among competing local maxima of curvature evolving with frequency. In turn, the estimate given by the

Bayesian criterion is found more stable in the whole frequency range, illustrating its robustness. The acoustic power

radiated by each opening has also been predicted and compared to the measurements (see Fig. 16). The predictions

were obtained by carefully choosing an integration area around each identified source, as shown on the top left panel

of Fig. 16. One can notice that the three sources are well located around their real positions and their contributions in

terms of acoustic power are fairly well predicted.
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Figure 15: Estimate of the total acoustic power for different regularization strategies. The reference (ref.) wasobtained fromp-u measurements.

The figure also shows a 98% Bayesian confidence interval around the point estimate returned by the proposed Bayesian criterion (BA).

9. Conclusion

A vast literature covers the issue of regularization on which critically depends the solution of inverse acoustic

problems. Taking a rather different route than traditional approaches encountered in acoustics, the paper demonstrates

the advantage of using a solution based on (empirical) Bayesian regularization. As evidenced by numerical simulations

and experimental results, the proposed regularization approach presents an improved performance as compared to the

state-of-the-art in acoustics. The gap seems significant possibly because the inverse acoustical problem is so much ill-

posed. Technically speaking, one important result of the paper is to deliver the posterior probability density function

of the regularization parameter as well as the joint posterior probability density function of the source and noise

energies. The optimal regularization parameter is then directly estimated as the maximum (most probable value)

of the former or, indirectly, as the ratio of the most probable values of noise and source energies (SNR ratio). In

practice, the two estimates are found very similar and virtually indistinguishable when the numbers of sensors or

snapshots is high. Although necessary to prove its main results, the probabilistic apparatus deployed in the paper

is ultimately transparent to the end user. Indeed, the automatic selection of the optimal regularization parameter

amounts to searching for the global minimum of a 1D cost function, which lends itself to easy implementation.

Numerous experimental results have demonstrated the superiority of the proposed Bayesian regularization to GCV
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Figure 16: (a) reconstructed acoustic power map integrated over the frequency band 200-1400 Hz. The+ symbols are the real source positions and

the dashed circles are the integration area used to compute the partial PSD of each source. The other panels show the PSD of each source identified

by the proposed method ( ) and obtained fromp-umeasurements ( ). (b) PSD of source A. (c) PSD of source B. (d) PSD of source C.

and the L-curve, whose use have been prevailing in acoustics. Another, rather unique, advantage of the approach is to

allow sampling the posterior probability density functionof the regularization parameter, from which variability due

to regularization can be propagated to any reconstructed acoustical quantity. This opens many perspectives for future

research. In conclusion, it seems that Bayesian regularization enjoys so many nice properties that there are few, if any,

reasons why not to use it.
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Appendix A.

Proposition 4. LetΩφ be a K× K matrix whose generic element is given by[Ωφ]kl =
∫

Γ
φk(r )φ∗l (r )dΓ(r ). Then

Ωc =
Ω
−1
φ

Trace{Ω−1
φ }

(A.1)

minimizes the scale length of the covariance function(6) – i.e. it makes it the closest possible to a delta function in

the mean-square sense.
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Proof. : Let us find a Hermitian matrixA in Cq(r , r ′) =
∑K

k=1 Aklφk(r )φ∗l (r
′) such that it minimizes

‖δ(r − r ′) −Cq(r , r ′)‖2 ,

∫

Γ

∫

Γ

|δ(r − r ′) −Cq(r , r ′)|2dΓ(r )dΓ(r ′) (A.2)

= 1− 2
∫

Γ

Cq(r , r )dΓ(r ) +
∫

Γ

∫

Γ

|Cq(r , r ′)|2dΓ(r )dΓ(r ′)

= 1− 2
K∑

k,l=1

Akl

∫

Γ

φk(r )φ∗l (r )dΓ(r ) +
K∑

k,l=1

K∑

i, j=1

AklA
∗
i j

∫

Γ

∫

Γ

φk(r )φ∗l (r
′)φ∗i (r )φ j(r ′)dΓ(r )dΓ(r ′).

Setting the derivative with respect toAkl to zero then returns

∫

Γ

φk(r )φ∗l (r )dΓ(r ) =

K∑

i, j=1

A∗i j

∫

Γ

∫

Γ

φk(r )φ∗l (r
′)φ∗i (r )φ j(r ′)dΓ(r )dΓ(r ′). (A.3)

Putting
∫

Γ
φk(r )φ∗l (r )dΓ(r ) = [Ωφ]kl, one then arrives at the system of equationsΩφ = ΩφAΩφ. In all problems of

interest matrixΩφ will be invertible (if not, this means that orderK in Eq. (2) can be reduced to a lower value until

invertibility is met), so that finallyA = Ω−1
φ .

The setting recommended in Proposition (4) is actually equivalent to using theorthogonalspatial basis{ψk(r ) =
∑K

l=1 φl(r )[Ω
1/2
c ] lk; k = 1, ...,K}with the identity covariance matrix. The fact that it produces the finest spatial resolution

– an important result in practice – turns out obvious within the Bayesian formalism, whilst it might not be so from a

deterministic approach. It is interesting to note that the result in Proposition (4) is independent of the choice of the

decomposition basis.

Appendix B.

Proposition 5.

[p|α2, β2] = NC
(

0, α2HΩcHH + β2
Ωn

)

(B.1a)

=

exp
(

−α−2 ∑M
k=1

|yk|
2

s2
k+η

2

)

πMα2M |Ωn|
∏M

k=1(s2
k + η

2)
(B.1b)

whereyk is thek-th element of vector

y = UH
Ω
−1/2
n p, (B.2)

the projection of the measurements on the array subspace.

Proof. : This proof concerns a standard result in the Bayesian treatment of linear regression and can be found in

classical references such as [47–50]. It is reproduced herefor the sake of completeness. The goal is to compute

integral

[p|α2, β2] =
∫

[p|c, β2][c|α2]dc =
∫

NC(Hc, β2
Ωn)NC(0, α2

Ωc)dc. (B.3)
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A direct calculation based on expanding the product of the Gaussians and “completing the square” is fastidious,

although not difficult. A more direct proof proceeds as follows. Let us first suppose that (K −M) extra measurements

are taken (while keeping the number of coefficientsck’s constant), thus producing the extended vectorspa ∈ C
K ,

na ∈ C
K , and matricesΩn,a ∈ C

K×K andHa ∈ C
K×K , whereHa is supposed of full-rank. Solving for this new problem

requires computing the integral
∫

[pa|c, β2][c|α2]dc =
∫

[na = pa − Hac|β2][Hac|α2]d(Hac) =
∫

[pa|Hac, β2][Hac|α2]d(Hac) (B.4)

wherein [na = pa − Hac|β2] stands for the pdf ofna evaluated atpa − Hac and the change of variablec 7→ Hac was

used. From first principles of probability calculus, integral (B.4) is recognized as the pdf of the sum of two random

variables, i.e.pa = Hac + na, with pdf’s [Hac|α2] = NC(0, α2HaΩcHH
a ) and [na|β

2] = NC(0, β2
Ωn,a), respectively.

The sum of two independent Gaussian random variables is again a Gaussian [48], with mean equal to the sum of their

individual means and similarly for its covariance. Therefore,

[pa|α
2, β2] = NC(0, α2HaΩcHH

a + β
2
Ωn,a). (B.5)

The last point is to marginalize the above pdf over the (K − M) extra measurements. As well-known for Gaussian

distributions, this is simplyNC(0, α2HΩcHH + β2
Ωn) [48]. Next, expression (B.1b) is easily worked out using the

eigen-elements in Eq. (13).

Appendix C.

Proposition 6.

[η2|p] ∝









M∑

k=1

〈|yk|
2〉

s2
k + η

2





MN−2 M∏

k=1

(s2
k + η

2)N





−1

, MN > 1. (C.1)

Proof. : The integral to be evaluated is

[η2|p] =

∫

[η2, α2|p]dα2 =

∫

[α2, β2|p]

∣
∣
∣
∣
∣
∣

dβ2

dη2

∣
∣
∣
∣
∣
∣

︸︷︷︸

α2

dα2

∝

∫

[p|α2, β2][α2, β2]α2dα2

∝

∫

NC(0, α2(HΩcHH + η2
Ωn)) |β2=α2η2 α2dα2 (C.2)

where it was assumed that [α2, β2] ∝ 1 as discussed in section 3.1. Now, using Eqs. (B.1b) (withN snapshots) and

(B.1b),

[η2|p] ∝
1

∏M
k=1(s2

k + η
2)N

∫ ∞

0

exp
(

−MNα̂2/α2)
)

α2(MN−1)
dα2 (C.3)

with α̂2 as given in Eq. (24). The integral in the above equation isΓ(MN − 2)(MNα̂2)−(MN−2), MN > 1, thus proving

Eq. (C.1).
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Appendix D.

The proof essentially consists in showing that all stationary points have positive curvatures with overwhelming

probability, i.e. that the second derivative ofJJoint(η2) is positive with a very high probability whenever the first

derivative vanishes (on the opposite, the existence of several local minima would necessarily involve intermediate

maxima with significant probability). First, stationary points are easily found to satisfy the following equation

dJJoint(η2)
dη2

=

M∑

k=1

1

s2
k + η

2
−

M∑

k=1

〈|yk|
2〉

α̂2(s2
k + η

2)2
= 0 (D.1)

with α̂2 as given in Eq. (24). Next, the second derivative at those stationary points is found equal to

d2JJoint(η2)
(dη2)2

= 2
M∑

k=1

〈|yk|
2〉

α̂2(s2
k + η

2)6
−

M∑

k=1

1

(s2
k + η

2)4
−

1
M





M∑

k=1

1

(s2
k + η

2)2





2

. (D.2)

It is unfortunately impossible to prove the above expression is always positive, whatever the values of the〈|yk|
2〉’s,

s2
k’s, andη2. However, one may prove the probability it takes negative values is overwhelmingly small. To see this,

let us first assume thatα2 ' α̂2, which is reasonable enough whenMN � 1. Next, let us introduce

Sq ,

M∑

k=1

1

(s2
k + η

2)q
andBq ,

1
M

S2
q

S2q
. (D.3)

Thus, the probability of a negative second derivative reads

P





M∑

k=1

〈|yk|
2〉

α2(s2
k + η

2)6
<

S4

2
(1+ B2)



 , (D.4)

or, equivalently,

P



e
−λ

∑M
k=1

〈|yk |
2〉

α2(s2k+η
2)6 ≥ e−

λ
2 S4(1+B2)



 ≤

E





e
−λ

∑M
k=1

〈|yk |
2〉

α2(s2k+η
2)6






e−
λ
2 S4(1+B2)

(D.5)

for anyλ ≥ 0, wherein the upper bound follows from Markov’s inequality[70]. Now, it results from Proposition 2

that 2N〈|yk|
2〉/(α2(s2

k + η
2)) are independent and identically distributed Chi-2 random variables with 2N degrees of

freedom,χ2
2N. Thus,

E





e
−λ

∑M
k=1

〈|yk |
2〉

α2(s2k+η
2)6





=

M∏

k=1

E





e
− λ

2N

χ2
2N

(s2k+η
2)2





=

M∏

k=1



1+
λ

N(s2
k + η

2)2





−N

= e
−N

∑M
k=1 ln

(

1+ λ

N(s2k+η
2)2

)

≤ e
−λ

∑M
k=1(s2

k+η
2)−2

(

1− λ

2N(s2k+η
2)2

)

, (D.6)

where the last term in the first line stems from the definition of the moment generating function of a Chi-2 random

variable and the last inequality in the second line from the fact that ln(1+ x) ≥ x − 1/2x2 [70]. Therefore, the upper

bound in Eq. D.5 becomes

e−
λ
2 S4(1−B2−

λ
N

S8
S4

)
. (D.7)
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Sinceλ is arbitrary, one may set it up so as to minimize the above upper bound. Setting the derivative of Eq. (D.7)

with respect toλ to zero, one finds,λ = 1/2(1− B2)MNB4/S4. Plugging in Eq. (D.7) one finally arrives at

P

(

dJJoint(η2)
dη2

< 0

)

≤ e−
1
8 (1−B2)2MNB4

MN→∞
−−−−−−→ 0. (D.8)

This probability is seen to decrease exponentially fast to zero with the productMN of the numbers of microphones

and snapshots. It also depends onB2 andB4 which, according to Eqs. (D.3), are to be interpreted as measures of

bandwidth of the sequence (s2
k + η

2)−1; in particular, a constant-valued sequence is especially critical becauseB2 = 1

jeopardizes the convergence to zero of the upper bound in inequality (D.4) – which is reminiscent to having a infinite

variance in Proposition 3. However, it can be readily verified that expression (D.1) is positive under this particular

circumstance.

Following the same lines, a similar results is proved for estimateη̂2
MAP; namely,

P

(

dJJoint(η2)
dη2

< 0

)

≤ e−
1
8

(1−B2−3ε+2ε2)2MNB4
(1−ε)2

MN→∞
−−−−−−→ 0. (D.9)

with ε = 2/(MN).

Appendix E.

Let us expandJMAP(η2) in Eq. (28) into a second order Taylor series about ˆη2
MAP:

JMAP(η2) = JMAP(η̂2
MAP) +

|η2 − η̂2
MAP|

2

2





d2JMAP(η̂2
MAP)

(dη2)2





η2=η̂2
MAP

+ O
(

|η2 − η̂2
MAP|

3
)

(E.1)

where dJMAP(η2)/dη2|η2=η̂2
MAP
= 0 (by definition ofη̂2

MAP) has been used andO means “on the order of”. Therefore,

[η2|p] ∝ exp
(

−JMAP(η2)
)

≈ exp



−
|η2 − η̂2

MAP|
2

2

d2JMAP(η̂2
MAP)

(dη2)2



 , (E.2)

which proves Proposition 2.

Appendix F.

The goal is to find the expected value of expression (D.1). Assuming as before thatα2 ' α̂2 whenMN � 1 and

keeping in mind that〈|yk|
2〉 ∼ χ2

2N/(2N),

E{〈|yk|
2〉} = α2(s2

k + η
2). (F.1)

Therefore

E

{

d2JJoint(η2)
(dη2)2

}

= 2S4 − S4 −
1
M

S2
2 = S4(1− B2), (F.2)

with S2, S4, andB2 as defined in Eq. (D.3).
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List of Figures

Figure 1: Schematic 1D representation of the Bayesian framework. The figure shows the different terms explicitly

depending onc in Bayes’ rule (see Eq. (9)). In the case of a uniform prior, the solution depends uniquely on

the likelihood and, for the case treated in this paper, it returns the solution (maximum likelihood) in terms

of the pseudo-inverse ofH (notedH†). The consideration of a Gaussian prior has “biased” our search

giving rise to the posterior, whose maximum (MAP estimate) returns the regularized solution expressed by

ĉ.

Figure 2: In most practical situations ˆη2
Joint andη̂2

MAP are found nearly equal, at least when the numbers of sensors or

snapshots is large enough (see left panel) . One exception iswhen the SNR is so poor thatJJoint tends to see

only noise, thus rejecting its minimum to infinity and returning an unbounded value of the regularization

parameter. Such a situation is forbidden byJMAP which, by construction, advantageously forces a finite

value ofη2 (see right panel).

Figure 3: The estimation of the source and noise energies amounts to finding the slope and intercept, respectively, of

the regression line passing through the cluster of measurement points
{

(s2
k; 〈|yk|

2〉); k = 1, ...,M
}

complying

with the conservation of energy lawE{〈|yk|
2〉} = α2s2

k + β
2. To improve visualization the right panel shows

the plot of the natural logarithm of both the singular valuess2
k and the coefficients|yk|

2.

Figure 4: (a) Geometry of the problem for the first scenario, showing the discretized source surface, the microphone

array and the simulated point source placed at the center of the surface. (b) Condition number for three

different distances from the source plane (zh).

Figure 5: Average value of the relative error to the optimal (MSE) solution over 500 realizations of measurement

noise. Each row corresponds to a given distance from the array to the source surface. First row:zh = rs,

second row:zh = 5rs and third row:zh = 10rs.

Figure 6: Histogram plot of the ratio between estimated and optimal regularization parameters for Bayesian regular-

ization: (a) BA, (b) L-curve and (c) GCV. They correspond to 500 realizations of measurement noise with

a SNR of 30 dB, frequency 1000 Hz and distance source-arrayzh = 5rss.

Figure 7: (a) Geometry of the problem for the second scenario. It shows the microphone array, the discretized source

surface and 3 point sources randomly placed at the source surface.; (b) Condition number of the transfer

matrix for distancezh equals to 10, 15 and 20 cm.

Figure 8: Average value of the relative error to the optimal (MSE) solution over 500 realizations of measurement

noise. Each row corresponds to a given distance from the array to the source surface. First row:zh = 10

cm, second row:zh = 15 cm and third row:zh = 20 cm.

Figure 9: (a) Point estimate of the regularization parameter η2 ( ) with confidence intervals estimated by a MCMC

procedure (shaded region) and by a Gaussian approximation (). (b) The reconstructed source spectrum

using the Bayesian regularization criterion () with a 95% confidence interval (shaded region) and the



optimal MSE solution ( ). (c) Global acoustic power as integrated over the source surface for the Bayesian

regularization criterion ( ) with a 98% confidence interval (shaded region) and the optimal (MSE) one

( ).

Figure 10: Acoustic source of interest.

Figure 11: Reconstructed source field (volume velocity) at 945 Hz corresponding to each regularization criterion. (a)

Bayesian regularization (BA); (b) L-curve and (c) GCV. A dynamic range of 15 dB is used for all.

Figure 12: Cost functions associated to each regularization criterion at the frequency of 945 Hz. (a) the Bayesian

regularization criteria. (b) curvature of the L-curve (whose corner is the point with maximum curvature).

(c) the GCV cost function.

Figure 13: Reconstructed source field (volume velocity) at 650 Hz corresponding to each regularization criterion. (a)

Bayesian regularization (BA); (b) L-curve and (c) GCV. A dynamic range of 15 dB is used for all.

Figure 14: Cost functions associated to each regularization criterion at the frequency of 650 Hz. (a) the Bayesian

regularization criteria. (b) curvature of the L-curve (whose corner is the point with maximum curvature).

(c) the GCV cost function.

Figure 15: Estimate of the total acoustic power for different regularization strategies. The reference (ref.) wasobtained

from p-u measurements. The figure also shows a 98% Bayesian confidenceinterval around the point

estimate returned by the proposed Bayesian criterion (BA).

Figure 16: (a) reconstructed acoustic power map integratedover the frequency band 200-1400 Hz. The+ symbols are

the real source positions and the dashed circles are the integration area used to compute the partial PSD of

each source. The other panels show the PSD of each source identified by the proposed method ( ) and

obtained fromp-umeasurements (). (b) PSD of source A. (c) PSD of source B. (d) PSD of source C.
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