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Empirical Bayesian regularization of the inverse acoustic problem

A. Pereird@*, J. Antonf, Q. Leckrée

3Laboratoire Vibrations Acoustique, INSA Lyon, 25 bis avedean Capelle F-69621 Villeurbanne Cedex, FRANCE

Abstract

This paper answers the challenge as how to automaticaélgtsiejood regularization parameter when solving inverse
problems in acoustics. A Bayesian solution is proposedabiasists either in directly finding the most probable value
of the regularization parameter or, indirectly, in estimgit as the ratio of the most probable values of the noise and
source expected energies. It enjoys several nice propetieh as ease of implementation and low computational
complexity (the proposed algorithm boils down to searcliorghe global minimum of a 1D cost function). Among
other advantages of the Bayesian approach, it makes possigppraise the sensitivity of the reconstructed acalstic
guantities of interest with respect to regularization, dgrenance that would be otherwise arduous to achieve.
Keywords:

Inverse problems, regularization, Tikhonov regularizatiBayesian probabilities, source identification, adoakt

holography.

1. Introduction

The inverse acoustic problem aims at reconstructing ansticaquantity of interest (e.g. parietal pressure, particl
velocity, acoustical intensity) from a limited number ofirete measurements — as typically returned by an array of
microphones or probes. As well-known, this is an ill-poseobfem in the sense of Hadamard — i.e. it may have
no solution at all or the solution may not be unique and it maykiremely sensitive to slight changes in the initial
conditions [1] — for its exact solution would require measgithe complete field over a surface enclosing the source(s)
of interest. As a consequence, solutions of an ill-posedrg®/acoustic problems are typically found unstable with
respect to very small perturbations in the measurementsedli-posedness fundamentally results from unavoidable
loss of information during the measurement process, thalusue is toregularize— i.e. to modify — the inverse
operator so as to control the magnitude or energy of the éagaolution within plausible limits [2-11]. In practice,
the resort to regularization is just as essential as itfticdit and, in many aspects, it appertains as much to an art as
to exact science.

The prevailing approach in acoustics and vibration is suited popular Tikhonov regularization (control of the

energy of the solution) [1, 12—-17]. A critical aspect of Téktov regularization — actually shared by most regular-
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ization techniques — is how to automatically determine thewnt of regularization to be introduced in the system,
which translates into the determination of a “regularimatparameter”. Several strategies have been developeid in th
perspective, however, at the present time, there is stalbsmlutely universal method that is robust enough and away
produces good results. Amongst the parameter choice metrsatl in the field of acoustics and vibratitime Gen-
eralized Cross Validation (GCV) [18] and the L-curve [19¢s®to prevail largely, although other methods have been
investigated such abe Normalized Cumulative Periodogram (NCP) [20, 21] aredMforozov discrepancy principle.
The latter depends on a good estimate of the measuremeastleeéd, that may not be available in practice. NCP is a
relatively recent method whose idea is to track the aspetteafesidual error as the regularization parameter changes
and select the parameter for which the residual can be canesichs close as possible to white noise. Several papers
in the literature provide comparisons offérent parameter choice methods, either applied in aceydtl; 22—26]

or in vibrations [27]. A general conclusion is that the beébawf each method is very problem-dependent and no
consensus on which one is the best has been read¢hdeed, the inverse acoustic problem is sometimes so much
ill-posed that choosing a proper regularization strateayy make a real fierence Recent publications in acoustics
propose dterent regularization techniques, such as iterative mstftoeheficial when dealing with large-scale prob-
lems) [28], Tikhonov regularization in its general forme(iby the use of discrete smoothing norms) [2], and a sparse
regularization techniques [29-31], to cite only a few. Mofthem still depend on either a regularization parameter
that must be optimally tuned or on a stopping rule for theatiee methods. In a more general context (i.e. outside the
field of acoustics), reference [32] provides an extensiveparison of several parameter choice methods by means of
a large simulation study.

This paper introduces a Bayesian approach to regularizdiat is conceptually rather féiérent from former
methodologies that have been prevailing in inverse aamisiihe key idea is to conceive regularization as the in-
troduction of prior information to compensate for the logsndormation resulting from the measurement process;
this is achieved in the form of a probability density functithat characterizes all physically plausible values of the
solution before the inverse problem is solved. The solutibthe inverse problem — including the reconstruction of
the acoustical quantity of interest plus the optimal turohthe regularization parameter — is then found as the most
probable values that comply with both the measurementshtengrtor information. In the special case of a Gaussian
prior — which is investigated only in this paper — the progbBayesian regularization scheme boils down to the same
structure as Tikhonov regularization, yet with the defimittrantage of providing rigorous criteria for automatigall
tuning the regularization parameter. It is shown in thisguapat the proposed Bayesian regularization enjoys severa

advantages as compared to other criteria traditionallg usewerse acoustics such as GCV and the L-curve:

e for a large range of acoustical configurations (simulatiod experiments), it generally returns a regularized

solution which is (in the least-square sense) closer to ptienal one

o for a large range of physigalcoustical parameters (level of noise, frequency ranggeeeof ill-posedness) it
is generallymore robust to (strong) additive noise,
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e it lends itself to easy implementation for it boils down tasghing for theglobal minimumof a 1-D cost

function,

e itis fully automatic and does not involve any tuning paraen€it actuallyreturnsthe noise level and expected

source energy as byproducts).

These advantages surely deserve a thorough introductiBayeafsian regularization to the acoustical community,
even though the mathematical apparatus required may sedrarfathe acoustical discipline. As a consequence, the
first part of the paper (in particular section 2) is preseiated tutorial before some novel theoretical and experirhenta
results are introduced in other sections. In spite of sépeezursory Refs. [33—44], the Bayesian regularizatioesdo
not seem to have attracted much attention in acousticsiffyps®cause many of the former early works came with
complex iterative algorithms). It is part of the presentgrapim to partly fill in this gap.The paper also highlights
several important properties which, according to the asthmowledge, have never been recognized before. Part of
the present material was first published in Ref. [45], whicheal at finding an optimal basis for source reconstruction
and demonstrating the benefit of taking prior informatioto inccount within a Bayesian framework. Herein, the
focus is on Bayesian regularization only and its genertitimgto any reconstruction basis, be it optimal or not. The

paper contains several original resuisted hereafter.

e A theoretical proof is given about the existence of a globalimum of the Bayesian regularization criterion;
this property is of prime practical importance since it @sfgood robustness to regularization (e.g. as com-
pared to GCV and the L-curve for which a global minimum doesaxist in general); in addition, it makes

possible an automated practice of regularization.

e The posterior probability density function of the regutation parameter is given in the case of complex-valued
data (i.e. Fourier transformed data); this is found usefalisess the errors due to regularization in all acoustical
quantities of interest and, as far as the authors know, atisetgsainalysis to regularization is demonstrated here

for the first time.

e Physical interpretation of Bayesian regularization iggiin terms of energy (first principle of thermodynamics)
which, hopefully, will participate to bridge the gap betwesn abstract probabilistic theory and the intuition

gained from physics.

e Extensive experimental results are given, both on nunlesicd on actual data, that clearly demonstrate the

supremacy of Bayesian regularization over the GCV and keuorethods.

The paper is organized as follows. The second section firsidaces general facts about the direct acoustic prob-
lem and then addresses the inverse problem within the Baypsbbabilistic framework. One objective of this section
is to introduce the notations and probabilistic premiseessary for the remaining of the paper, and preferably so in
a self-contained treatment of the acoustic inverse probfsmmentioned above, it should be read as a tutorial on the
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Bayesian approach to inverse (acoustic) problefi third section addresses the issue of Bayesian regaiiarnz
where several new results are established after scrupylfolowing the Bayesian program. Theoretical develop-
ments are accompanied by discussions relating to the giepand practical aspects of the proposed algoritfirhe.
fourth section is an attempt to demonstrate a physical mgaofi the proposed Bayesian regularization criteria in
terms of thermodynamicds he fifth section addresses the important question as hogitse the inverse problem is
to regularization, to which the Bayesian framework is shosvprovide a rather unique answer. Finally, the sixth sec-
tion is devoted to comparing Bayesian regularization withgtate-of-the-art methods, thus demonstrating itstesser

superiority.

2. Bayesian approach to the inverse acoustic problena tutorial

The object of this section is to cast the inverse acoustiblpro within the Bayesian probabilistic framework.
This is not only necessary to introduce the fundamentalkidea notations to be used in derivation of the Bayesian
regularization criterion in section 3 (the central resiltie paper), but it alsofers upstream justification to the
classical cost function used in inverse acoustics anddtsocTikhonov regularization.Since most of the results
presented in this section can be recovered by compiling the&an literature on linear models, it should be read
as a tutorial. A general reference on the Bayesian appraagivérse problems is [46]. Moreover, the treatment
of the inverse problem could be seen as dual of Bayesianrliegaession [47-50] after exchanging the role of the

explanatory variables and of the regressionficcients.

2.1. General statement of the inverse acoustic problem

Broadly speaking, the inverse acoustic problem of intdrestin amounts to reconstructing a source distribution or
“source field” (e.g. parietal pressure or normal velocitiyeg a finite number of measurements, as typically returned
by an array of microphones (or possibly velocity or pressiglecity probes). More formally, led(r), r € T, be the
source field of interest andits spatial domain, and Igi(r;) be the measurement at locatigni = 1, ..., M, whereM
is the number of probed he direct problem states how these quantities are refatgdher from physical principles.

Assuming a frequency domain representation, this work make of the integral equation representation,

p(ri):fFG(ri|r)q(r)dF(r)+vi, i=1..,M, (1)

whereG(rilr) is the (known) Green'’s function of the medium between parsdlr; andr, andy; accounts for measure-
ment noise and possible modeling errors. The objectiveeirierse problem is to recover an estimatg(@j given

the noisy measuremenis(r;); i = 1, ..., M} from the set of equations (1).

1The objectives of linear regression are, strictly speakimgnted towards solving the direct and not the inversélpra. However, the inverse
problem can be tackled after exchanging the roles of theaegpbry variables and of the regressionfioents. Although this might seem artificial
at first glance because the regressionfittients are, from a physical point of view, not variables betedministic “transfer functions”, it causes

no problem in the Bayesian framework where all parametersegiarded as random.
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Whether explicit or not, the usual approach is first to paraneg the unknown source. In most instances, this

amounts to expanding the source field onto a spatial basis,

K
ar) ~ ) o), K=M, )
k=1

wheregi(r), r € T are known basis functions which, without loss of generalityl be considered normalized such
thatfr lo(r)|?dr(r) = 1. Typical basis functions used in acoustics are for instatieeFourier basis (plane waves)

and the spherical harmonics (spherical wavBf)gging Eq. (2) into Eq. (1), the direct model now becomes
p=Hc+n, 3)

where vectorp € CM, ¢ € CX, andn € CM havenp(r), c;, andy; for their i-th element, respectively, anti];; =
fFG(rilr)qﬁj(r)dF(r), i=1,...M,j=1,..K. The inverse problem is thus turned discrete and basicaltgists in
identifying K unknown cofficientscy (note that the problem of jointly identifying the “best” im$unctionsg(r)
was addressed in Ref. [45]Note that the apparent simplicity of the matrix equationig3)nly structural and does
not alleviate its intrinsic complexity in terms dfavailability of the Green’s functionG(r;|r) leading to the transfer
functions HJ;; andii) the ill-conditioning of the resulting transfer matitk Indeed, the strong ill-conditioning of the
acoustic inverse problem is probably why itéidulty singles out as compared to other domains.

So far, the questions still remain as which cost functioruhbe minimized to solve facin Eq. (3) and how the
inverse problem should be regularized when maditiis ill-conditioned — see e.g. Refs. [24, 51]. Definite answer

are provided by the probabilistic approach introduced @rtext subsection.

2.2. A probabilistic solution to inverse acoustics

The essence of the Bayesian approach resumed in this sidtioendow all quantities of interest with probability
density functions (pdf’'s). On the one hand, this providesu@ful description of measurement noise, giving rise to
the so-called “likelihood function”; on the other hand it kea possible the specification of physically admissible
fluctuations in the reconstructed source field through thimitien of a “prior” pdf, a precaution which intrinsically
gives rise to a regularization mechanism. The combinatfdhelikelihood function and the prior then returns the
“posterior” pdf, that is the “inverse probability” of the et®r of codticientsc given measuremenfs This completely
solves the inverse problem, in particular by providing fgbas well as “interval” estimates to the after-sought seur

field. Each of these steps is detailed hereafter.

2.2.1. Encoding experimental errors with the likelihooddtion
The most natural variable to endow with a pdf is the measunémeisev; entering in the right hand side of
Eqg. (1). There are many reasons why a Gaussian pdf can beneddg@ssumed here. One is simply dictated by
experimental observations, where Gaussianity resulta fhe superposition of a large number of errors as formally
proved by the Central Limit theorem [52]. Another reasomstérom the passage to the frequency domain results by
5



application of a (typically long) Fourier transform whicgain due to the Central Limit theorem, implies convergence
to Gaussianity. Still another reason is because a Gaussiais the “worst case” (most dispersed) one could imagine
when modeling random fluctuations with given mean value avariance matrix according the Maximum Entropy
principle [53].

In this papem is assumed with zero mean, i.B{n} = 0, whereE stand for the expected value; this is because
any residual bias should be captured by the direct modelinkésent to the definition of “measurement” noise. The
noise covariance is defined Bgnnt'} = 52Q, where" stands for the conjugate transpose opergfois the (usually
unknown expected noise energy, afy}, is a matrix ofa priori correlation coéicients reflecting the nature of the
noise field such that Trag®,} = dim(n) = M (in many cases one may simply takl® = | equal to the identity
matrix). Thea priori choice ofQ, = | should be viewed here as the most neutral, in the sense thatanmation
is introduceda priori. In case the experimenter may have sar@iori knowledge on the nature of the noise field,
different noise models (such as described in Ref. [54, chap. 8))ba employed. Therefore, keeping in mind that
is a complex-valued vector, its pdf (denoted by brackejg’] for notational simplicity, where the conditioning @A

is explicitly reminded for reasons to become clear lateeiction 3) reads

[Nlg%] = Nc(0. B°) = exp(—B72IInli3, ). (4)

_r
”Mﬁ2M|Qn|
whereN¢ stands for “complex Gaussian{},| is the determinant of matri®, and, by notational conventioﬂnllf1n =
n"Q-n. The reader not familiar with the pdf of complex-valued datreferred to Refs. [55, 56] for a good support
and to Ref. [55] for an explanation on how the expression in(Epjis obtained. In turn, this implies thatin Eq. (1)

has the complex Gaussian pdf

[plc.8?] = Ne(He.f7Qy). (5)

The above pdf viewed as a function of variabtg's is referred to as the “likelihood function” [53]. It dedloes the

“direct” probability of the values op allowed by model (1) given the random fluctuations of the mezment noise.

2.2.2. Construction of the prior probability density fuioct

The assignment of a pdf to cdeientscy’s is conceptually less obvious, especially because thesesually
considered as deterministic parameters outside the Bayagpproach. However, one should keep in mind that these
are unknowns with no predefined values so that their estgwateld just as well be considered as possible outcomes
of a random process. Concerning thefticeentscy’s, two different situations must be distinguished: their possible
outcomedeforemeasurements are taken, the set of which reflects vaguenafimn possessepriori by the exper-
imenter, and possible outcomafier the measurements are taken, which should evidence muctaeability then
the former ones. The former are described bygher pdf [c] (investigated in this paragraph) and the latterthy
posterior pdf[c|p] (investigated in the next paragraph).

In the present work, the prior pdf reflects a distributionleygically admissible values for the source field [57, 58].
This is rather a weak constraint (the Bayesian framewdidring the possibility of considering many other types of
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constraints), but general enough for our purpose. Let ugfiie assume that the complex-valued source field is

priori of zero mean (in the ensemble average) and characterizée lmpvariance function,

Colr, 1) 2 Ela(N)a(r')'} = o2 ) [Qc]agw(r)ei (). (6)

kl=1
The last expression (wherefrstands for the complex conjugate operator) results fromrfimg Eq. (2) and posing
a?Q. = E{cc} with o? a (typically unknown) scaling factor on the source energy g a known matrix of cor-
relation codicients (whose exact setting depends on the problem) naedasuch that Tra¢®.} = dim(c) = K.
For instance a typical choice (implicit to deterministigapaches) is to assume that values at twtedént positions
on the source field are uncorrelated (i.e. a spatially whitece field), leading t®; = Ik, the identity matrix of
dimensionK, which implies that

fr E{lg(r))dr(r) = Ka?. @

A possibly more relevant choice is to enforaepriori the spatial whiteness of the source field — so as to enhance
spatial resolutionthe interested reader may refer to Appendix A for a detailgdleation on how this is achieved
From now on, many choices are possible for a prior pfiffat complies with the above covariance function. The

simplest choice is again to select a complex Gaussian:

[cla?] = Ne(0, a?Q) = exp(—a‘zllclléc) (8)

KoK | Q|
(where conditioning or? is explicitly reminded) The Gaussian choice in Eq. (4) is natural enough not to beaatgu
but this is less the case for the Gaussian prior in Eq. (8)s ®siue is well-known in the Bayesian literature where
it has been proved that the benefit of fiiesenceof a vague prior pdf (whatever its exact shape) usually Igrge
counterbalances the bias introduced by a specific prioreshapcompared to another one [53, 59]. Basically, the
prior information brought by such a pdf is to consider that tfigher the source norm, the weaker is its probability
of existence. The advantage of the above choice is to leadd¢table calculation — as shown in the next subsection
— yet the same approach could be followed with other priopsbgrovided the resulting integrals were numerically
evaluated or analytically approached [59].
2.2.3. Posterior probability density function and MAP esite

The solution to the inverse problem is finally returned byghsterior pdf §|p; %] which assigns probabilities to
possible values of cdkcientsc,’s once the measurements are taken. Bayes rule indicateshimwdf is obtained

from updating the prior pdfda?] with the likelihood function pic, 5%]. Namely,

o2 52 = [plc. B2 cla?]
(op.a. 7] = P 2, ©)
where
[plo?. 5] = f [plc. Al cla?]dc (10)
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Figure 1: Schematic 1D representation of the Bayesian framewidne figure shows the filerent terms explicitly depending arin Bayes’ rule
(see Eqg. (9)). In the case of a uniform prior, the solutioneshels uniquely on the likelihood and, for the case treatetlimdaper, it returns the
solution (maximum likelihood) in terms of the pseudo-inversdio(notedH). The consideration of a Gaussian prior has “biased” ourchea

giving rise to the posterior, whose maximum (MAP estimate)rretthe regularized solution expressedtby

is the “evidence” which will play a major role in deriving ti&ayesian regularization criterion later on in section 3.
The particularity of the Bayes rule is to express an “inveebability in terms of “direct” probabilities. Once the
full pdf [clp, @?,87] is known, a relevant point estimate of the unknown vectds returned by the most probable
value after observing the data, i.e. the maximum of the piostedf in Eq. (9) — the so-called “maximum aposteriori
estimate” (MAP).The expression for the posterior pdf is obtained by sulistgdor the complex Gaussians found in
Egs. (5) and (8) into Eq. (9), leading to a quadratic costtionovhose minimum returns the estimatecofThis has
already been done in Ref. [45] for the general case of an wakrmasis functiorpy(r), and thus the mathematical

details are omitted here. The standard result is then adatain

&= QH" (HQH" +1720,) p (11)
where
,82
= -t 12)

Equation (11) is an important step towards the goal of thijepalndeed, the consideration of a Gaussian prior
through the Bayesian framework has “mechanically” produeeegularized solution of the Tikhonov type — see e.g.
Refs. [1, 51].A simple illustration of the Bayesian framework followedHhwgrto is described in Fig. 1, representing
the diferent terms in Bayes’ ruleThe significance of the regularization paramefegiven in Eq. (12) is clearly
that of a noise-to-signal ratio (NSR) (ratio of expectedsroenergys? to expected source energy). A similar
interpretation is found in early references on classicaHNAQ], outside the Bayesian framework, and in statistical
approaches such as SONAH [60].

It is reminded that no assumption have been made concerithvag ¢he acoustical propagation or the nature of
sources. Although the approach requires the knowledgeeoBtieen’s function of the medium, it is not restricted to

a particular propagation type (e.g. free-field, half-spatmsed space).
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2.3. Filtration of eigenvalues

A helpful interpretation of the regularized solution (1&¥ults from the singular-value decomposition

M
Q. PHQ!? = Z ScURVE (13)
]

wheres; > s, > ... sy > 0andU = [uU,...uy] € CWM andV = [vivs...vy] € CM form two unitary matrices

(such thau"U = VHV = | y). Substituting into Eq. (11), one has the simple result
e= oy | X |uro; (14)
- C § + T]2 n p

where[s¢] symbolizes a diagonal matrix with generic diagonal elensgnAs well-known, this is the structure of a
generalized pseudo-inversetdfvhere the smallest singular valugsare progressively filtered out from the inversion,
i.e. s/(S+n%) =~ 1/sif s> n? ands/(s +n?) ~ 0if s < n? S0 as to prevent instability due to over-amplification
of measurement noise or simply numerical overflow wkkis ill-conditioned. In other words;? is clearly to be
construed as a “cufty frequency indicating whereﬁ passes below the NSR, a terminology especially relevanhwhe
the unitary basi§/ happens to contain the complex exponentials of a Discretei¢tatransform as encountered in
classical Near-Field Acoustical Holography (NAH) [10].tYeommon to all regularization strategies is th&idulty

in tuning optimally the value of that parameter, a practic ts not less essential than critical. The goal of the prtese

paper is to propose a solution that enjoys many advantageswgsared to the current state-of-the-art in acoustics.

3. Regularization within the empirical Bayesian framework

The regularization structure formulated in the previoudisa is known to work well provided the regularization
parameter;? is correctly set. Obviously, rare are the situations whiae value is known in advance and numerous
strategies have been proposed as how to set it, either frqirieat, physical, or statistical rules. Within the Bayasi
framework, the purist approach would be to see it a “nuisggaameter” and to integrate it out, that is to recover a
regularized version of the source field from the marginaligesterior {ip] = [[clp, o, 8%][ @2, p?|da’ds?. The major
difficulty that arises with this strategy is that it generallyde#o integrals that are analytically intractable. Thug, no
only is an equivalent to the closed-form expression (14 lmst computationally very demanding methods (such as
Markov Chains Monte Carlo) have to be resorted to. Thisliastacceptable today in many inverse acoustic problems
where industrial feasibility is of concern (remember tihatinverse problem usually has to be solved for all frequency
bins of a discrete Fourier transform). An alternative soluknown as “empirical Bayes” in the literature is to re@ac
the unknown hyperparameters by estimates obtained fromiettae Apart from being legitimate in its own right [61],
empirical Bayes can also be seen as a very good approxintatitre full Bayesian approach discussed above [53,
chap. 10]. Within the full Bayesian framework, one exampgledference [62], which deals with hyperparameter
estimation for image restoration using a MCMC algorithmtHa context of regularization, the empirical Bayesian
approach is discussed to obtain estimates of hyperparesrseteh asr? andg? in [33] in a quite general setting, in
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[34, 35, 37] as the “evidence” method and in [39, 40] as thertyimalized MAP (of type 3)” method. In particular,
reference [37] handles the case of a Gaussian likelihoodaa@dussian assumption on the prior pdf, as studied
here. Some early references tackling a similar issue afjarj4fte context of spline smoothing and [42]. References
that explicitly give an estimate of the regularization paeger,? are [43] and [44] for a Bayesian interpretation of
the latter. Yet, reference [63] also provides a Bayesiagrjmetation of regularization and a maximum likelihood

estimation of the regularization parameter, which is camgdo the GCV method in the context of image deblurring.

3.1. The Bayesian program

In the empirical Bayesian approache interpretation of the regularization parameter as a bl&fgests estimating
it directly from the dataAs discussed abovdifferent strategies are conceivable. A first one is to estinfatedirectly
as the ratio of the most probable valueswdfands? given the measurements, i.e.
~2 :éz 2 N2 2 2
M3oint = a2 where (%, %) = Argmaxfa®, 87p]. (15)
The above strategy has already been briefly described iN#&f.A second strategwhich is presented here for the
first time, is to find directly the marginal posterior pdf g% and then to select that value with maximum probability

of occurrence, i.e.
da? (16)

A~ 0 2
fuap = Argmaxf;’|p] where [%p] = f [0?.8% = &*n°lp] 'OL;Z

with 882 /0n°| = o? standing for the Jacobian of the change of variabésa?) — (a2, »?). This solution is more in
the “Bayesian spirit’since it integrates out the intermediary varialsfewhen it is not of direct interest.

The two strategies are addressed hereafter in a unifiedneestfor they require the same “ingredients”: first the
evaluation of the likelihood functiorp[e?, 2], second the definition of the prioaf, 5?], and third the evaluation of
the posterior pdfd?, 82|p]. The likelihood function pla?, 3?] is obtained from marginalizing the likelihood function
[plc, 3?] of section 2.2.1 over, which is nothing else than the evidence defined by Eq. (IMis is obtained
by substituting Egs. (5) and (8) into Eq. (10). For the dethinathematical treatments, the reader is referred to
Appendix B or Refs. [47-50].

The Bayesian frameworkfi@rs the possibility of including any prior information theperimenter may have on
either o or 82 before the measurements are taken, practice that is knownhararchical Bayes approach [53].
Although the Bayesian literature is very vast on how to defirier pdf’s, first principles are considered here to

distinguish two plausible scenarii.

1. Scenario 1: In the simplest case one may simplysepf] « 1 (x stands for the “proportional” sign) in Eq.
(19) meaning that all outcomes are assuragatiori equiprobable, choice that may be viewed as the “worst
case”. Then the empirical Bayesian approach is basicallivagnt to maximum likelihood.

2. Scenario 2: In a more luckily configuration, the experiteemay have some vague knowledge about the ex-

pected noise energs?, for instance related to the known instrumentation dynappeeliminary measurements
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(e.g. with the acoustic sources switchet),cor known sensor sensitivity. Note that such types of srdar not
cover modeling errors which are unavoidable in model (1)raagt even predominate [58]. A simple choice is

therefore to endow the noise energy with an inverse Gammeipich enforces positive values:
[0?, 8] < [B°] = G M b) o % exp(-bB?), a>0,b>0, a7

where parametesandb are tuned to set the central position and width of the pdf. ifiterse Gamma choice

is motivated by the fact that it leads to analytically tréteaexpressions when combined with a Gaussian
likelihood, to which it is a conjugate pdf [48]. Particuldnaices areq = 1,b = 0) when all outcomes ¢8?

are assumed priori equiprobable on a logarithmic scale [59] armd= 0,b > 0) for the Maximum Entropy
solution when solely the mean valiigs—2} = b™! is imposed. In general, the mean of the inverse Gamma is
E{8%} = b/(a-2),a> 2, its mode id/a, and its variance V482} = b?/(a — 2)?(a— 3), a > 3. Therefore, if
[E{?} and the cofficient of variationy = Var{s?}~?/E{?} are both knowra priori, the inverse Gamma is to be

parameterized as

a=3+y72 (18a)
b=(1+y)E{B?. (18b)

By way of an example, a phase error mismatch on microphavith standard deviation will produce multi-
plicative noise p(ri) = po(ri) exp(j¢), wherepy(r;) stands for the noise-free pressure value; assumisgnall
enough,p(ri) = po(ri) + vi with vi = jpo(ri)¢. Thus, one ha&{B?} = |po(ri)?c? =~ |p(ri)|?c?; finally, given a

user-defined value of, a = 3+ y~2, andb = (1 + y2)|p(r)|?c.

Other scenarii with prior knowledge on the expected souneegya? are less plausible and will not be considered
in this paper, although the Bayesian framework perfectied to take them into account. The next results are derived
for the case of scenario 1, which is the case employed in theerival simulations and experimental set-up in the
following sections. Results for the case of scenario 2 marehdily obtained by substituting for the inverse Gamma

pdfin Eqg. (17) into Eq. (19) and proceeding similarly as ia tase of scenario 1.

3.2. First strategy: Joint probability density functionmdise and source energies

Given all the above preliminaries, one is now in a positioevaluate the joint pdf ofa?, %) given the measure-

ments. Using again the Bayes' rule it is written as:

[@% B%Ip] o [pla?, A[?, B2, (19)

where the settingd?, %] « 1 is considered from now on. The maximization of the aboveatiqn, that is, the MAP
estimate, leads to the following cost function to be minioizvith respect ta? ands?
M M 2
T2 ) = ' In(a? 4 2) + ) %, (20)
k=1 k=1
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as conveniently expressed in terms of the eigen-elemeBfa(id whersy is thek-th element of vector
y = UHQ "p, (21)

that is the projection of the measurements on the array agbspOne peculiarity is that the fgient statistics
arising in Eqg. (20) is no longer the vector of complex pressys, but actually the covariance matrix of the latter,
pp" —i.e. it is the only measurement required to comgut® in Eq. (20). This leaves the interesting option of
averaging together several measurements in order to get ammurate estimates whenever the acoustical field is
statistically stationary. Specifically, let us assume thattiple snapshot§j; j = 1,..., N} are available, for instance
as a result of segmenting the time series into short-timekisldoefore applying the Fourier transform. The only
modification is in the likelihood function (5) where the joprdf [{p;; j = 1, ..., N}|c; 7] should be considered instead.
Assuming independent snapshots, the latter is the sameegwdlduct of individual pdf’s, i.e.l‘[jN:l[pjlc;ﬁz] =
1‘[}11 Nec(Hcj, f2Qp). This results in all the same equations as obtained hithieut with|yi|? replaced by its average

on N snapshots,

1 N
(Iyl?y = u ey [N > pjp,-“]ﬂal/Zuk, (22)
=1

———
SPP

whereS;,, stands for the (empiric) correlation matrix of measurememiduy for the k-th column of matrixU. This
general configuration will be assumed from now on, a speaisg deindN = 1 when no averaging is requested.
The minimization of cost functiod;einde?, %) is an easy exercise. Let us first introduce the change cdivias

(@?,8?) — (a2, 7). Then, setting the derivative of

Js0ind? 1) = ZM: In(€+7) + = ZM: W | Mina? (23)
e ] @\ S+’

with respect tar? to zero, one immediately gets the MAP estimate

M 2
“ e

k=1

Unlike the source energy, there is no closed-form solutioritfe regularization parametet. Substituting fore? in

Jioind@?, %), one then has

Mo = Argmin Jyoin(n?) (25)
with
JJoint(TIZ) = -]Joint(a’z, 772) -M
M
= Z|n(s§+nz)+ M In 62. (26)
k=1

12



This is a 1-D minimization problem which may be easily catrit starting with a rough grid search method fol-
lowed by a refined gradient descent or dichotomy method. rim the MAP estimate of the noise energy, if needed,

e P2 — 52« 52
ISp”=a X M3oint

3.3. Second strategy: Marginal probability density fuontof the regularization parameter

As discussed in section 3.1, another laudable strategytitoate the regularization parameter from the data is to
directly find its posterior pdf,j?|p], without requiring the intermediate estimations of théseand source energies,
a2 and?. The exact expression ofjp] is carried out by marginalization of the joint pdq, g2|p] in Eq. (19).
The mathematical steps describing how this is carried optdsented in Appendix C for the interested reader. The

following MAP estimate of the regularization parameterligained:
fgae = Argmin Juap () (27)
with
u 2
2 A 2 ~2
Juar(?) 2 ;In(im )+(|v| - N)ma
2 .
= Json(r’) = 15 In(@%6r)) (28)
where it is emphasized in the second line théis a function of;?, as given in Eq. (24), ani is the number of
snapshots as defined prior to Eq. (ZBhe estimate of the regularization parame,ﬁ;gp‘is returned as the minimum
of cost function (28).
3.4. Discussion

Equations (28) and (26) are important results of the (erwgdirBayesian approach undertaken in this paper. Thus,

before one proceeds further, several remarks are in ordeisgtincture.

3.4.1. Comparison of strategies

It is anticipated that the two estimat@%i;t andn‘fAAP found in sections 3.2 and 3.3 must be closely related — since
Imap = Jaoint— (2/N) In @2 according to Eq. (28) — although they have no reason iddmicalfor the MAP estimate
of a ratio is generally not equal to the ratio of the MAP estsa Indeed, since(2/N)Ina? is a monotonically
increasing function of?, it comes that

fiap < Moine (29)

meaning that;,\z,lAP in general yields a “less regularized” solution thﬁgn; In addition, the term-(2/N) In &2 acts as
a penalty that forbids solutions (i.e. source fields) wittozenergye?. This is confirmed by the asymptotic behavior

of JjointandJyap asn? — oo, given as follows:
Jsoindn®) ~ CM,  asy® - oo (30a)
2
Iwap (') ~ g Inor’, - asy” — oo, (30b)

13



JJoin\

Figure 2: In most practical situatioméoi“m andn‘fwAP are found nearly equal, at least when the numbers of senssrsmpshots is large enough
(see left panel) . One exception is when the SNR is so poodghattends to see only noise, thus rejecting its minimum to infinitg eeturning
an unbounded value of the regularization parameter. Sudhatien is forbidden bylyap which, by construction, advantageously forces a finite

value ofy? (see right panel).

with C a constant. Notice thaljein: tends to a constant whildyap still grows to infinity. This property might be
advantageous in some low SNR configurations whggig: tends to “see” only noise and thus returns an infinite value
for ﬁgoint‘

However, in most experimental instances it has been vetifjeithe authors thaﬁ andn‘f,IAF> are found nearly

oint
equal, especially when the produdN of the numbers of microphones and snapshots is large. Thi@nsally

justified by the fact that

2 .
Iuar (7%) = Jsointir?) - N In &% —— Jsoint(17%) (31)
N———— ——— MN—oo
oMo T

whereO means “on the order of”. Figure 2 illustrates the above rémhAy means of an example selected from the

simulations to be presented in Sec. 6.

3.4.2. A posteriori estimate of the signal-to-noise ratio
Following the discussion in Sec. 2.3, it is interesting tmaek that an estimate of the signal-to-noise ratio (SNR)
a posteriorimay be obtained fronﬁ;mt or ﬁfAAP. Taking into account the propagation from the source fielthéo

microphone array it follows that
. 1 o
SNR= —— , (32)
M ; S

whereM is the number of microphones asdthe singular values as defined in Eqg. (13). The above estimayebe

compared, for instance, to a measured or expected sigmeatli$e ratio over the array of microphones.

14



3.4.3. Accounting for the inverse Gamma prior on the noisrgn
For the sake of completeness, we briefly provide hereafeentbdified cost functions to account for the inverse

Gamma prior on the noise energ¥. Omitting the intermediate steps, Eq. (20) is now given as

M M
(2 p2 o2 Iyl a, , b _,
Jyoinda@®, B%) = kZ:: 53 +ﬁ kZ; m N Ing= + Nﬁ , (33)

with a andb the parameters of the inverse Gamma pdf in Eq. (17). Intioduihe change of variableg?, %) —

(@?, %) and minimizing with respect ta? gives

o 1 R
sl )

The cost function to be minimized with respect;fothen follows

Join?) = DI (S +72) + (M + %)m@h%mnz, (35)

M
k=1

from which the modifiedyap (5?) directly follows from the relation in Eq. (28).

3.5. Properties

The Bayesian estimators of the regularization parametéaduced in the former section happen to enjoy several

interesting properties which are listed in this subsection
1. Uniqueness of solution.

Proposition 1. The cost functiond;eind;7?) andJuap(n?) in Egs.(26) and (28) have at most one minimum with

probability one when the product MN of the numbers of micar@s and snapshots becomes large.
Proor. : see Appendix D

This proposition is of fundamental importance, since iabishes the robustness of the proposed regularization
strategy: as opposed to most alternative strategies, iagtias that the estimation gf will not be trapped into
local minima (as might happen with GCV or the L-curve for argte). An explanation of this nice property
is to view exg—Juap(17%)} as proportional to a unimodal pdf. Note that Property 1 i atslid for (small)
finite values ofMN with overwhelming probability — see Appendix D — a fact thastalways been observed
by the authors in a large variety offflirent configurations. However, Proposition 1 might allowJg,n{7?)
to possibly have no minimum at all, a situation likely to reflenconsistency in model (1) or its associated
likelihood function (5) (e.g. presence of strong modelinges). This property is presented for the first time
and thus consists one of the novel results in this paper.

2. Ease of implementatio.he proposed regularization strategy leads to simple imefgation. First, the explicit
evaluation of the inverse problem is to be evaluated onlyedhough the calculation of the eigen-eleméduts
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V, and{s¢; k = 1, ..., M}, required in Eq. (14). The only extra work is to minimikgin(;7%) or Juap (1?) to which
Proposition 1 allows the use offieient numerical algorithms. Second, the regularizatioatsgy applies just
as well to measurement setups that record either the cordptag or solely their correlation matrixg,,, since
the latter is the sfficient statistics entering into the evaluatioméfas discussed in section 3.2.

. Physical insight.In contrast to other approaches, the proposed algorithimngboth an estimate of noise and
source energiesy” andp?, in addition to their ratio. This may provide useful physigsight into the final
solution of the inverse acoustic problem, for instance $b fier the presence of modeling errors by comparing
the value of8? to the maximum of the expected measurement noise level,smmife figures of merit such as
the Akaike Information Criterion or Bayesian Informationit€rion are to be computed to test the validity of
model (1) [64].

. Evaluation of sensitivity to regularizatiorzinally, the probabilistic apparatus attached to the deiteation of
the regularization parameter allows the propagation afmegion errors to any acoustical quantity of interest.
In other words, it provides a definite answer to the cruciastgion: “how sensitive is the reconstructed source
field with respect to the setting of the regularization pagteri. As far as the authors know, this question has
rarely been answered despite of its considerable impagtand the criticity of regularization in practice. Due

to its relevance, this point will be further investigatedatction 5.

4. Physical interpretations in terms of energy

In contrast to most regularization strategies used in se/acoustics, the proposed Bayesian solutiorftgpang

of a formal probabilistic approach. Very interestinglyednterpretation stems from the conservation of energy (1st

thermodynamic principle).

4.1. Energy balance

One simple way to understand the tenants of the proposethareggtion strategy is to consider Eq. (21) that yields

the projection{yx; k = 1, ..., M}, of the data onto the array subspace. Taking the expected gdknergy with respect

to the prior source cdicients and measurement noise, one gets

E{(yl®)} U @, PR S pp Q5

Ul Q.72 (a®HQH" + 52Qn) @, "2u

?E+p% k=1..M, (36)

where the last line was arrived at after using Eq. (13). Thisation establishes the energy balance between the

expected energy of measurements before they are actudliigtenl and the source and noise energigsand 2.

In practice,E{(Jyx[>)} is not available, however the set of equations (36) coultllsi solved approximately after

substituting it by the actual measuremefiys2). Thus least squares could be a solution to get the “slepeind the
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Figure 3: The estimation of the source and noise energies amtufinding the slope and intercept, respectively, of tiggassion line passing
through the cluster of measurement poih@; Ay®): k=1, ..., M] complying with the conservation of energy 1&(Iy?)} = o?s2 + 2. To

improve visualization the right panel shows the plot of thiured logarithm of both the singular vaIua%and the cofficients]yy|.

“intercept” 82, but with no guarantee of positiveness of the latter (quagjrealues. A much better strategy would be
to estimate these parameters from the Maximum Likelihoattle after recognizing thak has a complex Gaussian
pdf Nc(0, @®s? + #%). When the prior is uniform, this actually happens to boil daw the MAP estimates of (25).

This is illustrated in Fig. 3 by way of an example extractemhirsimulations to be presented in Sec. 6.

5. How sensitive is the acoustic inverse problem to regulazation?

As mentioned several times in the paper, the art of reg@aon is as risky as essential for successfully solving
the acoustic inverse problem. Therefore, it is crucial teeas the fect small modifications in the regularization
parameter will have on the reconstructed source field. Imtskite question to be addressed is how sensitive the
reconstruction is to the actual setting of the regularimaparameter? As far as the authors known, this issue has
never been investigated in the present field of interestitdeisp practical importance. One refrainingttiulty is that
7 intervenes in a very non-linear way into the estimation|©j.

Because the Bayesian frameworks tregtss a random variable endowed with a pdf, fiieos a rather unique

answer to the present issue.

5.1. Exact solution from Markov Chain Monte CafidCMC) sampling

The posterior pdfi?|p] found in Proposition 6 fully answers the goal of quantifyithe uncertainty stemming
from regularization: by allowing to sample values:gf it makes possible to propagate the variability due to regu-
larization to any acoustical quantity of interest functiiy depending on the regularization parameter, such as the
source field, its quadratic flux, the acoustical intensityth@ acoustical power. Since such a pdf does not seem to
pertain to a standard family, one has to resort to MCMC methsdch as the popular Metropolis-Hasting algorithm,
to sample it [53]. This is surely a minor price to pay for exeds.
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5.2. Gaussian approximation
Should one not require the full posterior pgfp] but simply characterize it by its variance, then the folilogy

simple Gaussian approximation may be useful:

Proposition 2.

: 37

n2

[0l ~ N (7% 0%)  with o? = (
=n

PIuap(m?)
(@?)? )

%, andJwap(n?) given in Eqs(27) and (28), respectively.
Proor. : seeAppendix E

The second derivative diyap(77%) arising in Eq. (37) may be evaluated analytically or, manepdy, numerically. In
the case where the produdN is large (so that the convergence in Eq. (31) holds tri)s given in closed-form by
Eq. (D.2) of Appendix D. Such an approximation has the benéétise of implementation, for it requires little more
than a random generator of Gaussian variables to propagats stemming from regularization to any reconstructed

acoustical quantity.

5.3. Cramer-Rao lower bound
Interestingly enough, the inverse of the expected value éfin Proposition 2 returns to the Cramer-Rao lower
bound [59] of the regularization parametgr that is the lowest possible variance that can be attaineshipyinbiased

estimate;?. Specifically, when the produdtN of the numbers of sensors and snapshots is large,

Proposition 3.

1 1
2
var {T] |p} = (dZJMAP(UZ)) MN—co M 1 2 (38)
Ty (1-B2) X1 (W)
where )
(Zlﬁil L 2)
B, = M—iﬂll (39)
M Zk:l (i_HIZ)Z

Proor. : see Appendix F

FactorB, entering into Eq. (38) is to be interpreted as a measure afvigth of the sequenceﬁ+ %)L indeed,
1

— <B

M = 2

where the lower bound is reached when all but one of ¢he- (?)'s are nil and the upper bound when & ¢ 7%)’s

IA

1 (40)

are identical. This latter situation is especially critifta B, = 1 implies an infinite variance in Eq. (38): practically,
it corresponds to the experimental configuration wheresgtmeequatior(lyi|?) ~ o?s2 + 52, k = 1,..., M is observed
M times, thus making it impossible to estimate the two unkrewfnands? and their ratioz?. This is fully compliant
with the interpretation of section 4.1. At the same times ftarticular configuration also corresponds to a well-posed
inverse problem where virtually no regularization shouédrbquired, thus lessening th&et of a large variance
around;? = 0 on the reconstructed acoustical quantity of interest.
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6. Numerical comparison to the state-of-the-art methods irmcoustics

In order to examine the performance of the Bayesian regaltoin criterion, numerical experiments of acoustic
inverse problems are presented in this section. Two referpapers on this field are selected as benchmarks [22,
24], illustrating a wide range of source reconstructionfigurations. In both papers, the performance of GCV and
the L-curve was compared in the framework of numerical atossmulations. It was shown that the behavior of
both methods varies significantly with the simulation pagters (i.e. level of measurement noise, frequency or
distance between microphone array and source surface)aaprewailing method could be indicated. Our aim here
is to check the fectiveness of the proposed Bayesian regularization icniteapplied to the cases investigated in
the aforementioned references. For that purpose, the doofehe acoustic problem treated in each reference is
reproduced and is briefly recalled in the next subsections.

The direct problem employed in the simulations has beenrithestin Sec. (2) and a free-field propagation is

assumed, with Green'’s function given by:
gkl

Arllri ]I’
wherek = w/cis the acoustic wavenumbery,is the angular frequency amds the speed of sound. The solution of the

G(rilr) = (41)
inverse problem for the source dheients €) is given by Eq. (14) and the filierent parameter selection methods will
be used to adjust the regularization paramgfeherein. The implemented cost functions for the GCV and tveu
methods are exactly the same as those described in refer@&;&4], and a detailed analysis of each can be found
in refs. [18, 65].

An indicator based on the knowledge of the exact solutiomefihverse problenc] is obtained by computation
of the mean squared error (MSE) [22] betwaeand solutions for all potential regularization parametekscost
function can be written as:

Juse = I[E(7%) - cll. (42)

The optimal regularization parameter is thus returned byntmimum of the cost function:
s e = Argmin Jys e(n®). (43)

This indicator illustrates the “best we can do” scenario thedcdfectiveness of each method is evaluated as the relative
error to the optimal solution, as follows:

ICea — Cms Ell l€.c — Ems el ICacv — Cmsell
EBA= ————, flc = — 5 E€6CV= —f———— (44)
[ICmsEll [ICms Ell [ICmsEll

where, from now on, we use the notation BA for the presentge8an criterion and LC for the L-curve. The noise
term entering on the right hand side of Eqg. (3), used to sitaulae acoustic pressure, consists of multiplicative and
additive perturbations, with signal-to-noise ratio (SN&)ging from 40 dB to 6 dB. The noise term corresponding to
thei-th microphone is given by:
2
v = 107 SNR201 ye”po (1) + o€/ —”pl\‘;l” , (45)
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wherey andé are zero mean Gaussian random variables Wein(y) = Var(§) = 1, 6 and¢ are random variables
uniformly distributed between 0 andr2p, is the vector of noise-free pressure aoyfr;) its i-th component. The
employed frequency band ranges from 100 Hz to 2500 Hz andrthdations are carried over 500 random trials of
measurement noise for each frequency and SNR. A MATBARplementation of the codes used for the simulations

is available online [66].

6.1. Case 1: Square systdiM = K)

The geometry of this problem is reproduced from Ref. [22] ensketched on the left panel of Fig. 4. A planar
array of %9 microphones is placed affrom a vibrating surface modeled as a distribution ®®9nonopole sources.
The inter-source spacing is set to be identical to the imierophone spacing { = r;). Simply one point source is
placed at the center of the source surface with volume uglecjual to unity. The condition number of the transfer
matrix for this scenario is shown on the right panel of Fig.o#three diferent distances to the source plane. We
observe that as the distance is increased, the conditiafittge matrix is increased (especially at low frequencies)

and that the problem is mainly ill-conditioned at low frequ&s. The results of the simulations are given by the

o 10
o oooooooo —z,=r,
o ° o ° ——z,=5,
o o o o o
o o o o o © o P ez = 10r
Ooooo 0000 OO ) ° o o 10 Nl < n
~
o .

o
3
Condition number
=)
/

; ; | ;
Pt 0 500 1000 1500 2000 2500
Ty Frequency [Hz]

(@ (b)

Figure 4: (a) Geometry of the problem for the first scenarioyshg the discretized source surface, the microphone andyte simulated point

source placed at the center of the surface. (b) Condition eufob three diferent distances from the source plang.(

average of the indicator (Eq. (44)) over all random trialguFe 5 shows the results for three distances from the array
to the source surface respectively equakte: rg (first row), z, = 5rs (second row) and, = 10rg (third row), with
rs = rm = 12 cm. Note that the results for the non-regularized case @&added on the last column. We observe
that GCV gives satisfactory results when the array is platesk to the source, however, when the microphone array
is moved farther away (increasing on the condition numhgmdvides very poor results for a wide frequency range
and all levels of noise, showing that GCV is very sensitivhsconditioning of the problem. In fact, although GCV
returns reasonable regularization for some noise enssrabthose range, it occasionally fails to do so and thisrailu
leads to completely anomalous solutions, because thearzation paramete;zecv is too small. This is confirmed by
the histogram plot shown in Fig. 6, which corresponds to fithals for a SNR of 30 dB, frequency of 1000 Hz and
distantz, = 5rg from the source surface. It shows the ratio between the aegation parameter estimated by each
20



method and the optimal one. The closer the ratio is to 1, titeris the estimate. We note that the GCV'’s histogram
presents a tail towards very small values, which means assewelerestimation of the regularization parameter. This
behavior was observed for all range of SNR and frequenciéshwBCV gives high relative erroesscy.

The results of the L-curve do not present a common trend ®thhee studied cases, however it is clearly not
effective for high levels of measurement noise (low SNR) anceat low frequencies. On the other hand, the results
returned by the Bayesian regularization criterion arestadtory for the whole set of tested acoustical configunatio
with errors rarely exceeding 20% of the optimal MSE solutiofVe remark that the results returned by the cost
functionsJ it andJuap Were very similar, therefore just the caselgfi is presented here.
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Figure 5: Average value of the relative error to the optimaS@) solution over 500 realizations of measurement noise. Eaclgorresponds to a

given distance from the array to the source surface. Fivgtzg = rs, second rowz, = 5rg and third row:z, = 10rs.

6.2. Case 2: Under-determined systévh < K)

The geometry of the second case is reproduced from Ref. [dl]iadepicted in Fig. 7. A planar array of
6x5 microphones is placed at a distarmdrom a source surface which is modeled by a grid ak28 monopole-
like sources. The inter-microphone and inter-source sigacare respectively set to 10 cm and 2 cm in boamdy
directions. This configuration models an under-determgeethario, with the number of measurement positions much
lesser than the number of unknown sourcefiégcients. In this case, the simulation is done by randomlyipta8
monopoles on the source distribution and assigning randonplex strength to each of them. The simulated acoustic
pressure is then perturbed with the noise model given by Ef). (The same indicator (relative error to the MSE
solution) is used and the results are presented in Fig. 8. & that the GCV presents similar behavior to the
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Figure 6: Histogram plot of the ratio between estimated arin@pb regularization parameters for Bayesian regularirat{a) BA, (b) L-curve and

(c) GCV. They correspond to 500 realizations of measuremaséndth a SNR of 30 dB, frequency 1000 Hz and distance soain@z, = 5rss.

first scenario, producing satisfactory results when thayais placed relatively close to the source (except at low
frequencies and low SNR) and poor results when it is movatdaaway (higher condition number). The L-curve
seems to treat this case better than the previous one exospt/dow frequencies and a frequency band depending
on the array-source distance. Again, the Bayesian regatin criterion is able to produce satisfactory results fo
all source-array distances and over the full range of SNRI$eand frequencies. We can notice, however, that the
relative errorsgp at high frequencies and high SNR are slightly greater tharethors for the non-regularized (NR)
and L-curve (LC) cases. Itis apparent that no regularimdtithe best option at those ranges, indeed, the L-curve had
no corner for those cases and the employed algorithm appiesgularization. On the other hand, the Bayesian cost
function still exhibits a minimum and the solution is slihdversmoothed. Although, as it will be shown in the next
section, introducing a small amount of regularization whienproblem is not very ill-conditioned (high frequencies

on the simulations) has a small impact on the reconstruatedstic quantities.
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Figure 7: (a) Geometry of the problem for the second scendrghows the microphone array, the discretized source sugad 3 point sources

randomly placed at the source surface.; (b) Condition numitiedransfer matrix for distancg equals to 10, 15 and 20 cm.
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Figure 8: Average value of the relative error to the optimaS@) solution over 500 realizations of measurement noise. Eacleorresponds to a

given distance from the array to the source surface. Fivetzg = 10 cm, second rowz, = 15 cm and third rowz, = 20 cm.

7. Estimation of confidence intervals

As previously stated in Sec. 5, the Bayesian framework baipgpbabilistic approach, it allows one to compute
parameters of the pdf's assigned to the problem unknownse ganticularly attractive is the posterior pdf of the
regularization parametenj|p], whose variability can be propagated to any acoustic diyaot interest in order to
provide confidence intervals, for instance. Two possiblgsmaf performing this task were discussed in Sec. 5,
one by a simple Gaussian approximation of the posteriip] and a second by its exact evaluation using MCMC
methods. Both procedures are applied here by means of arpéxagiected from the scenario described in Sec. 6.1.
It corresponds to the configuration with the array placeddistancez, = rs from the source surface and with a SNR
of 30 dB. A point estimate of the regularization parametdivdeed by the Bayesian criterion is shown in Fig. 9(a)
along with its variability (filled gray area) estimated by &MC procedure. Figure 9(a) also shows, in dashed black
lines, the confidence interval obtained by approximatimgabsterior pdf4?|p] by a Gaussian distribution. The latter
is obtained by numerical evaluation of the second derigativEq. (37), which is related to the varianee?) of the
distribution. We can note that the intervals given by the €3&n approximation agree well with those computed by
MCMC up to approximately 800 Hz. Above those frequenciesafiigroximation of the posteriond|p] by a Gaussian
distribution does not hold anymore, illustrating the lisnitf this approximation. The discontinuities above 1500 Hz
are related to oscillations on the condition number of taadfer matrix used in this example (see right panel of Fig.

4 for z, = r), since the regularization criterion alternates betwermgalarized and non regularized solution.
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The estimate of source ciieients is obtained by Eq. (14), with tleepriori assumption tha®, = | andQ. =
I, that is, no additional information concerning the spatiairelation on either the measured field or the source
field is introduced, practice that is implicit to determiiégsmethods. We emphasize the fact that theseagueori
assumptions, and thus do not impede one to obtain a recotestrsource field having a degree of spatial correlation
between sources. The basis functions stemming from a singalue decomposition of the propagation operator (see
ref. [45]) in Eq. (41) is then used to recover the source fialdjigen by Eq. (2).An integration over the source
surface at each frequency gives the source spectrum (se@(B)yfor the Bayesian regularization criterion (red) and
the optimal one (black). The variability of the regularinatparameter is then propagated to the reconstructedesourc
field as shown by the filled gray region in Fig. 9(b). It is irgsting to note that the reconstructed volume velocity
is much more sensitive to the setting of the regularizatarmameter at low frequencies. Indeed, a small variation on
the regularization parameter at low frequencies leadsgberiuncertainties on the reconstructed source spectrum.
On the other hand, a large variation ghat higher frequencies had littléfect on the reconstructed quantity. This
analysis can be further extended to the acoustic powerrattsd over the source surface, as shown in Fig. 9(c). We
can see that the estimated acoustic power using the Bayesjatarization criterion is fairly close to the optimal
(MSE) solution. Moreover, we note narrow confidence intlsrea the acoustic poweg(0.5 dB), meaning that small
variations on the regularization parameter generated simegrtainties on this quantity. We remark that this result
not to be interpreted as if the regularization was not imgodrto the reconstruction, it actually shows how sensitive
is the reconstruction of these acoustic quantities to suzalhtions around the point estimate of the regularization

parameter.
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Figure 9: (a) Point estimate of the regularization paramgter—) with confidence intervals estimated by a MCMC proceduredstaegion)
and by a Gaussian approximation {). (b) The reconstructed source spectrum using the Bayes@narization criterion- —) with a 95%
confidence interval (shaded region) and the optimal MSE isoli{t—). (c) Global acoustic power as integrated over the sourdacifor the

Bayesian regularization criterion-(—) with a 98% confidence interval (shaded region) and the op{imi&E) one ().
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8. Experimental results

This section illustrates an application of the Bayesianla@tgation scheme in an experimental set-&zfore
describing the experimental set-up we briefly summarizeathpeiori assumptions in the model. Similarly to the
previous simulation examples, we assume that there ésprri spatial correlation over the measured pressure field,
that is,Q, equals the identity matrix. Other structures €& could be modeled or even measured, for instance, by
performing a measurement with the physical sources swdtckte This idea has been tested in Ref. [45], although
in terms of qualitative results the gain was shown to be maigiThe choice of a prior structure £2; (i.e. spatial
correlation co#éicients of sources) is less obvious in practical cases intwliitte information concerning the sources
is available before making the experiments. Based on theredison that physical sources are often spatially compact
one could for instance, introduce arpriori that points on the source field close to each other are ctecklauch
as to enforcea priori the continuity of the source field. We finally stress that thgisg of Q, or Q is strongly
dependent on the practical application. For instance,ioemaustics one could use an exponential decay structure fo
the spatial correlation of the background noise, in casdatiter is originated by a turbulent flow. A complete study
on the influence of dierent settings fof2, andQ. are outside the scope of this paper and is left as a perspeaitiv
future work. A reference on the modeling of covariance magiis [67]. The results presented hereafter are obtained
with the simple settin@. = I, i.e., noa priori spatial correlation is introduced.

The source of interest is a driver unit connected to a pipysgesn with three outlets (diameter 2.2 cm), as shown
in Fig. 10. This source is a good approximation of three datee monopoles in the frequency range of interest
(200-2000 Hz). A planar array ofx% microphones (inter-microphone spacing of 10 cm) is plate20 cm from
the plane comprising the three outlets. A fictitious souragase (on the plane of outlets) with dimensions<80
cn? is discretized with a constant spacing of 4 cm. The virtuakses are modeled as point sources and the Green’s
function given in Eq. (41) is used to compute the propagatiothe array of microphones. Equation (14) is again
used to solve for the source dheients with the regularization parametgrset by the dierent approaches. The
experiment was carried out in a semi-anechoic room of diinessix3.40x2 m® and the source was driven with
white random noise. The particle velocity and the soundsuneswere measured at 5 cm from each opening using
a Microflown p-u intensity probe, allowing an estimation of their acoustisvpr. The radiated acoustic power is
estimated by integrating the measured acoustic intengéy @ spherical surface of radius 5 cm and centered at each
opening.

Figure 11 shows the reconstructed source field (volume igjcat 945 Hz using the regularization parameter
returned by the Bayesian criterion (BA), the L-curve and GIE¥an be seen that GCV fails to compute a reasonable
solution, on the other hand, the reconstruction obtainetth®&y.-curve and the Bayesian criterion is fairly good. The
cost function at this frequency for each method is shown @ Hi2. We notice that the L-curve and the Bayesian
criterion yield similar regularization parameter, yet imare convincing way for the latter (note the presence oflloca

maxima on the L-curve’s curvature). We can also observettigaminimum of the GCV function (not visible with
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Random noise

Figure 10: Acoustic source of interest.

the employed scale) is located towards smaller valueg ofrhich led to the undersmoothed solution shown in Fig.
11 (right hand side). The reconstructed source field at 65@Ghown in Fig. 13. In this case, the GCV and the
Bayesian criterion yield similar results, on the contraing L-curve criterion led to a rather over-smoothed sotutio
We remark that at this discrete frequency only two of thedls@urces radiate significant energy, as shall be confirmed
by the measurements to be presented next (see Fig. 16). $hieiootions corresponding to this case are represented
in Fig. 14. We note that GCV and the presented Bayesianicriteeturned similar regularization parameters. On the
other hand, the L-curve’s curvature exhibits two local maxivery close to each other in level. A better alternative in

this particular case, would rather be to select the localimar slightly on the left of the global maximum.
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Figure 11: Reconstructed source field (volume velocity) &t194 corresponding to each regularization criterion. (a)€&&n regularization (BA);

(b) L-curve and (c) GCV. A dynamic range of 15 dB is used for all.

The acoustic power radiated by the reconstructed sourdesiged computed in a similar manner as in Ref. [68]. It
essentially consists of summing the power radiated by eittlal/point source in isolation and a term that is the power
generated by each source in working against the inducedymegenerated by neighbor sources (see, for example,
Ref. [69]). Figure 15 compares the reconstructed globalisttopower (as integrated over the source surface) to the
referencep-u measurements. As can be seen, the GCV results diverge atfsmpiencies, which are related to a

severe underestimation of the regularization parametertheé L-curve, although the results are globally satisfiact
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Figure 12: Cost functions associated to each regularizatitterion at the frequency of 945 Hz. (a) the Bayesian regration criteria. (b)

curvature of the L-curve (whose corner is the point with maximaurvature). (c) the GCV cost function.

BA dB (m%/s) L-curve dB (m%/s) GCV dB (m%fs)
0.6 -5
=12
0.4 » -10 : -14
— g -16 g -10
E o2 -18
> _
0 - 99 -15
-0.2 20 24
-0.2 0 02 04 06 -0.2 0 02 04 06 -0.2 0 0.2 04 06
x[m] x[m] x[m]
(@) (b) (c)

Figure 13: Reconstructed source field (volume velocity) t85 corresponding to each regularization criterion. (a)é#&an regularization (BA);
(b) L-curve and (c) GCV. A dynamic range of 15 dB is used for all.
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Figure 14: Cost functions associated to each regularizatitterion at the frequency of 650 Hz. (a) the Bayesian regration criteria. (b)

curvature of the L-curve (whose corner is the point with maximaurvature). (c) the GCV cost function.
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we notice few discontinuities for instance around 650 ar@i37. Further investigation has shown that they are due to
alternations among competing local maxima of curvaturdvawg with frequency. In turn, the estimate given by the
Bayesian criterion is found more stable in the whole fregyeange, illustrating its robustness. The acoustic power
radiated by each opening has also been predicted and calripatiee measurements (see Fig. 16). The predictions
were obtained by carefully choosing an integration arearad@ach identified source, as shown on the top left panel
of Fig. 16. One can notice that the three sources are wellddaround their real positions and their contributions in

terms of acoustic power are fairly well predicted.
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Figure 15: Estimate of the total acoustic power fdietient regularization strategies. The reference (ref.) otdsined fromp-u measurements.

The figure also shows a 98% Bayesian confidence interval dritnienpoint estimate returned by the proposed BayesianioritéBA).

9. Conclusion

A vast literature covers the issue of regularization on Wwhddtically depends the solution of inverse acoustic
problems. Taking a ratherfterent route than traditional approaches encountered imstics, the paper demonstrates
the advantage of using a solution based on (empirical) Balyesgularization. As evidenced by numerical simulations
and experimental results, the proposed regularizatioroagp presents an improved performance as compared to the
state-of-the-art in acoustics. The gap seems significastilply because the inverse acoustical problem is so muchiill
posed. Technically speaking, one important result of theepes to deliver the posterior probability density funatio
of the regularization parameter as well as the joint pastgsrobability density function of the source and noise
energies. The optimal regularization parameter is theactir estimated as the maximum (most probable value)
of the former or, indirectly, as the ratio of the most proleathlues of noise and source energies (SNR ratio). In
practice, the two estimates are found very similar and ailyuindistinguishable when the numbers of sensors or
shapshots is high. Although necessary to prove its mairitsesbe probabilistic apparatus deployed in the paper
is ultimately transparent to the end user. Indeed, the aatiorselection of the optimal regularization parameter
amounts to searching for the global minimum of a 1D cost fienctwhich lends itself to easy implementation.

Numerous experimental results have demonstrated theistipeof the proposed Bayesian regularization to GCV
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Figure 16: (a) reconstructed acoustic power map integratedtbe frequency band 200-1400 Hz. Theymbols are the real source positions and
the dashed circles are the integration area used to compupaihal PSD of each source. The other panels show the PSizbfeurce identified
by the proposed method-(—) and obtained fronp-u measurements—). (b) PSD of source A. (c) PSD of source B. (d) PSD of source C.

and the L-curve, whose use have been prevailing in acougticther, rather unique, advantage of the approach is to
allow sampling the posterior probability density functioitthe regularization parameter, from which variabilityedu
to regularization can be propagated to any reconstructeastical quantity. This opens many perspectives for future

research. In conclusion, it seems that Bayesian regutamizanjoys so many nice properties that there are few, if any

reasons why not to use it.
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Appendix A.

Proposition 4. LetQ, be a Kx K matrix whose generic element is given[]i = fr #x(r)¢; (r)dr(r). Then
9—1
Q=—2 (A1)
Trace{ﬂ;l}
minimizes the scale length of the covariance func{®n- i.e. it makes it the closest possible to a delta function in

the mean-square sense.
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Proor. : Let us find a Hermitian matriA in Cy(r,r’) = ZkK=1 Augk(r)e; (r’) such that it minimizes
I6(r = 1) = Cq(r, 1) 2 frfrw(r —17) = Cq(r, r")[2dr(r)dr'(r") (A.2)
_1_ 12 ’
=1 Zﬁcq(r,r)dr(r)+ﬁfr|cq(r,r )edr(r)dr(r’)
K K K
=1-2 “(r)dr - F(r')e* {(rYdr(r)dr(r”).
kJZﬂAk. fr () (1) (r)+K|Z:li;ﬂAk|AJ fr fr #1115 ()51 )Ar(r)ar(r)
Setting the derivative with respect &g, to zero then returns
K
fr P(r)py (r)dr(r) = HZ:;N] fr fr P(r)gy (r')ei (r)gj(r')dr (r)dr(r"). (A.3)

Puttingfr¢k(r)¢|*(r)dr(r) = [Q,]«, one then arrives at the system of equatifys= Q,AQ,. In all problems of
interest matrix2, will be invertible (if not, this means that ord&r in Eq. (2) can be reduced to a lower value until

invertibility is met), so that finalhA = Q;l.

The setting recommended in Proposition (4) is actually vedent to using therthogonalspatial basidy(r) =
2|K=l & (O[] k = 1, ..., K} with the identity covariance matrix. The fact that it prodathe finest spatial resolution
— an important result in practice — turns out obvious withie Bayesian formalism, whilst it might not be so from a
deterministic approach. It is interesting to note that #ult in Proposition (4) is independent of the choice of the

decomposition basis.

Appendix B.

Proposition 5.

[Pla® %] = Ne (0.a*HQH" + 5°Q) (B-1a)
2
exp(—a‘z Zl’il ilyil,iz)
= v (B.1b)
aMa?M|Q| Hk:l(si + 1)
wherey is thek-th element of vector
y = U"Q, "p, (B.2)

the projection of the measurements on the array subspace.

Proor. : This proof concerns a standard result in the Bayesiannieza of linear regression and can be found in
classical references such as [47-50]. It is reproduced foertne sake of completeness. The goal is to compute

integral
[plo2 5] = f [pic. Al cla?ldc = f Ne(He, Fn)Ne(0, Q) de. (B.3)
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A direct calculation based on expanding the product of thasGians and “completing the square” is fastidious,
although not dficult. A more direct proof proceeds as follows. Let us firstmuge thatik — M) extra measurements
are taken (while keeping the number of fls@entsc,’s constant), thus producing the extended vecmrs CX,

na € CK, and matrice€,, € C**K andH, € C**K, whereH, is supposed of full-rank. Solving for this new problem

requires computing the integral

f [palc. A2][cla?]dc = f [N = Pa — HaGl2l[ Hacla?ld(Hac) = f [PalHaCA[HaClo?ld(Ha))  (B4)

wherein h, = pa — Hac|8?] stands for the pdf oh, evaluated ap, — Hac and the change of variabte— H,c was
used. From first principles of probability calculus, int&ig(B.4) is recognized as the pdf of the sum of two random
variables, i.e.pa = HaC + Ng, with pdf's [Hacla?] = Ne(0,a?HaQcHY) and a2 = Ne(0, 82Qn ), respectively.
The sum of two independent Gaussian random variables ia agaaussian [48], with mean equal to the sum of their

individual means and similarly for its covariance. Therefo

[Pala?, 8] = Ne(0,a*HaQcHY + B2Qn.). (B.5)
The last point is to marginalize the above pdf over tie-( M) extra measurements. As well-known for Gaussian
distributions, this is simply¢(0, ?HQHM + 52Q,) [48]. Next, expression (B.1b) is easily worked out using th
eigen-elements in Eq. (13).
Appendix C.

Proposition 6.

M 2
[nzuo]oc([z é’yj'nl) ﬂ(siw%”] . MN>1 1)

k=1

Proor. : The integral to be evaluated is

da?

2
el = [la%plda = [T ;%

——
2

[e3

R

f [plo?. B[ 2. F]a?da?

153

f Ne(0, > (HQH + 7°Q0)) g2z, a*da? (C.2)

where it was assumed that? %] « 1 as discussed in section 3.1. Now, using Eqgs. (B.1b) (Nignapshots) and
(B.1b),

. _MNAZ 2
= ! f eXp( C_y @ ))daz (C.3)
[Tika (s + 7N Jo o2MN-1)

with @2 as given in Eq. (24). The integral in the above equatidi{ N — 2)(MN&?)-MN-2 MN > 1, thus proving
Eq. (C.1).

[7°Ip]
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Appendix D.

The proof essentially consists in showing that all statigrmints have positive curvatures with overwhelming
probability, i.e. that the second derivative &in(17%) is positive with a very high probability whenever the first
derivative vanishes (on the opposite, the existence ofraklgcal minima would necessarily involve intermediate

maxima with significant probability). First, stationaryipts are easily found to satisfy the following equation

dJJo.m(n ) IR0 R
- =0 (D.1)
ZS&‘FTI ;a2(3£+,72)2
with a2 as given in Eq. (24). Next, the second derivative at thog®stry points is found equal to

2

Plionn®) _ <0 D ¥ ( S ]
— =2 — — . D.2
O 2w+ ; eIV P ©2)

It is unfortunately impossible to prove the above expressoalways positive, whatever the values of thg|?)’s,
i’s, andz;?. However, one may prove the probability it takes negatilaesis overwhelmingly small. To see this,

let us first assume thaf ~ &2, which is reasonable enough whstN > 1. Next, let us introduce

oo 1S3
S¢2 ) ————andBy & — —. (D.3)

4 ;(imzw 97 M Sy

Thus, the probability of a negative second derivative reads
M 2
(lykl ) Sy

P —— < —(1+By)|, D4
(;a2(§+n2)6< 5 (1+B) (D.4)

or, equivalently,

e
Ele A XK1 peIE
/]Zk . <\}/k\ )
Ple 2(%4.,,2)6 > e 254(1+Bz) (DS)
e*%SA(]-*BZ)

for any A > 0, wherein the upper bound follows from Markov's inequalit§]. Now, it results from Proposition 2
that 2N(lyil?)/(e?(s2 + %)) are independent and identically distributed Chi-2 randariables with & degrees of

freedom,y3,. Thus,

—A Zl’il 2<ka|2>2 6 M ’ﬁ X%Nz 2 M N
Ele (L) = 1_[ Ele N &P l_[ N(si 7
7

k=1 k=1

M M 2y-2 B
e—N Zk:lln(l*'m) < e—/l S (&) (1_W)’ (D.6)

where the last term in the first line stems from the definitibthe moment generating function of a Chi-2 random
variable and the last inequality in the second line from #et that In(1+ x) > x — Y/2x? [70]. Therefore, the upper
bound in Eq. D.5 becomes
g 15408 34) (D.7)
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SinceA is arbitrary, one may set it up so as to minimize the above uppend. Setting the derivative of Eq. (D.7)

with respect tol to zero, one finds] = 1/2(1 — B,)MNBy/S4. Plugging in Eqg. (D.7) one finally arrives at

P(dJJ;i;gnz) < 0) < e 51-B?MNE, MNox ) (D.8)
This probability is seen to decrease exponentially faseto zvith the producMN of the numbers of microphones
and snapshots. It also dependsBmnand B, which, according to Egs. (D.3), are to be interpreted as oreasof
bandwidth of the sequencqf(+ 7%)~L; in particular, a constant-valued sequence is especietlgal becausé, = 1
jeopardizes the convergence to zero of the upper bound quaity (D.4) — which is reminiscent to having a infinite
variance in Proposition 3. However, it can be readily vedifieat expression (D.1) is positive under this particular
circumstance.
Following the same lines, a similar results is proved foinester;;, ,; namely,
P(—d‘hg“‘z("z) < 0) < gV e (D.9)
7

with € = 2/(MN).

Appendix E.

Let us expanduap(7%) in Eq. (28) into a second order Taylor series abgjt,

|772 - ﬁMAplz dZJMAP(ﬁ%AAP)
2 (dn?)?

+0(1? - 7papl’) (E.1)

2_52
"=1vap

Inap (%) = Iwar (\iap) +
where dMAp(nz)/dnzlnzz%lAp = 0 (by definition ofn’ﬁlAP) has been used a@means “on the order of”. Therefore,

(E.2)

|772 - ﬁMAp|2 dZJMAP(ﬁEAAp))

[7°1p] o< exp(-Jmap (7?)) ~ exp(— > @77

which proves Proposition 2.

Appendix F.

The goal is to find the expected value of expression (D.1)urssg as before that? ~ @> whenMN > 1 and

keeping in mind thaglyw|?) ~ x5, /(2N),

E{yd®)} = o?(s; + 1%). (F.1)
Therefore 5 ,
d-J oint(77 ) 1
{(37]—2)2} =254~ Sy~ 553 = Sy(1- Bo), (F.2)

with Sy, S4, andB; as defined in Eq. (D.3).
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Schematic 1D representation of the Bayesian framie The figure shows the flierent terms explicitly
depending or in Bayes’ rule (see Eq. (9)). In the case of a uniform pricg,sblution depends uniquely on
the likelihood and, for the case treated in this paper, itrres the solution (maximum likelihood) in terms
of the pseudo-inverse df (notedH™). The consideration of a Gaussian prior has “biased” ourckea
giving rise to the posterior, whose maximum (MAP estimag)ims the regularized solution expressed by
c.

In most practical situations,, andsz .- are found nearly equal, at least when the numbers of sensors o
snapshots is large enough (see left panel) . One exceptidmeis the SNR is so poor thdj.in tends to see
only noise, thus rejecting its minimum to infinity and retimghan unbounded value of the regularization
parameter. Such a situation is forbiddendyap which, by construction, advantageously forces a finite
value ofp? (see right panel).

The estimation of the source and noise energiesiaiito finding the slope and intercept, respectively, of
the regression line passing through the cluster of meamTEpmints{(i; Ayd®): k=1, ..., M} complying
with the conservation of energy lai((|yx*)} = *s + 2. To improve visualization the right panel shows
the plot of the natural logarithm of both the singular vaIa%and the cofficients|yy/?.

(a) Geometry of the problem for the first scenatioysng the discretized source surface, the microphone
array and the simulated point source placed at the centéreadurface. (b) Condition number for three
different distances from the source plang.(

Average value of the relative error to the optimdSE) solution over 500 realizations of measurement
noise. Each row corresponds to a given distance from thg tordoe source surface. First row; = rq,
second rowz, = 5rg and third row:z, = 10rs.

Histogram plot of the ratio between estimated gtaral regularization parameters for Bayesian regular-
ization: (a) BA, (b) L-curve and (c) GCV. They correspond @®5ealizations of measurement noise with
a SNR of 30 dB, frequency 1000 Hz and distance source-agraybsr ss.

(a) Geometry of the problem for the second scenklrstows the microphone array, the discretized source
surface and 3 point sources randomly placed at the sourtaceur(b) Condition number of the transfer
matrix for distancez, equals to 10, 15 and 20 cm.

Average value of the relative error to the optinEE) solution over 500 realizations of measurement
noise. Each row corresponds to a given distance from thg &ordne source surface. First row; = 10
cm, second rowz, = 15 cm and third rowz, = 20 cm.

(a) Point estimate of the regularization paramgt¢—) with confidence intervals estimated by a MCMC
procedure (shaded region) and by a Gaussian approximation (b) The reconstructed source spectrum

using the Bayesian regularization criterion-) with a 95% confidence interval (shaded region) and the



optimal MSE solution{-). (c) Global acoustic power as integrated over the soundacifor the Bayesian
regularization criterion- —) with a 98% confidence interval (shaded region) and the @t{MSE) one
)

Figure 10: Acoustic source of interest.

Figure 11: Reconstructed source field (volume velocity)4& Bz corresponding to each regularization criterion. (a)
Bayesian regularization (BA); (b) L-curve and (c) GCV. A dynic range of 15 dB is used for all.

Figure 12: Cost functions associated to each regularizatitterion at the frequency of 945 Hz. (a) the Bayesian
regularization criteria. (b) curvature of the L-curve (v8kacorner is the point with maximum curvature).
(c) the GCV cost function.

Figure 13: Reconstructed source field (volume velocity)5it Bz corresponding to each regularization criterion. (a)
Bayesian regularization (BA); (b) L-curve and (c) GCV. A dynic range of 15 dB is used for all.

Figure 14: Cost functions associated to each regularizatiiterion at the frequency of 650 Hz. (a) the Bayesian
regularization criteria. (b) curvature of the L-curve (vkacorner is the point with maximum curvature).
(c) the GCV cost function.

Figure 15: Estimate of the total acoustic power fdfatient regularization strategies. The reference (ref.)obgsined
from p-u measurements. The figure also shows a 98% Bayesian confidgeoel around the point
estimate returned by the proposed Bayesian criterion (BA).

Figure 16: (a) reconstructed acoustic power map integ@atedthe frequency band 200-1400 Hz. Fheymbols are
the real source positions and the dashed circles are thgratiten area used to compute the partial PSD of
each source. The other panels show the PSD of each sourciiédieny the proposed method () and
obtained fronp-u measurements<). (b) PSD of source A. (¢) PSD of source B. (d) PSD of source C.
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