Fast Langevin based algorithm for MCMC in high dimensions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Fast Langevin based algorithm for MCMC in high dimensions

Résumé

We introduce new Gaussian proposals to improve the efficiency of the standard Hastings-Metropolis algorithm in Markov chain Monte Carlo (MCMC) methods, used for the sampling from a target distribution in large dimension $d$. The improved complexity is $\mathcal{O}(d^{1/5})$ compared to the complexity $\mathcal{O}(d^{1/3})$ of the standard approach. We prove an asymptotic diffusion limit theorem and show that the relative efficiency of the algorithm can be characterised by its overall acceptance rate (with asymptotical value 0.704), independently of the target distribution. Numerical experiments confirm our theoretical findings.
Fichier principal
Vignette du fichier
MCMC_DGVZ.pdf (422.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01174226 , version 1 (08-07-2015)

Identifiants

  • HAL Id : hal-01174226 , version 1

Citer

Alain Durmus, Roberts O. Gareth, Gilles Vilmart, Konstantinos Zygalakis. Fast Langevin based algorithm for MCMC in high dimensions. 2015. ⟨hal-01174226⟩

Relations

252 Consultations
151 Téléchargements

Partager

More