Fast Langevin based algorithm for MCMC in high dimensions
Résumé
We introduce new Gaussian proposals to improve the efficiency of the standard Hastings-Metropolis algorithm in Markov chain Monte Carlo (MCMC) methods, used for the sampling from a target distribution in large dimension $d$. The improved complexity is $\mathcal{O}(d^{1/5})$ compared to the complexity $\mathcal{O}(d^{1/3})$ of the standard approach. We prove an asymptotic diffusion limit theorem and show that the relative efficiency of the algorithm can be characterised by its overall acceptance rate (with asymptotical value 0.704), independently of the target distribution. Numerical experiments confirm our theoretical findings.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...