Quasi-thermalization of non-interacting particles in a quadrupole potential: Analog simulation of Weyl fermions
Résumé
We study theoretically, numerically, and experimentally the relaxation of a collisionless gas in a quadrupole trap after a momentum kick. The non-separability of the potential enables a quasi thermalization of the single particle distribution function even in the absence of interactions. Suprinsingly, the dynamics features an effective decoupling between the strong trapping axis and the weak trapping plane. The energy delivered during the kick is redistributed according to the symmetries of the system and satisfies the Virial theorem, allowing for the prediction of the final temperatures. We show that this behaviour is formally equivalent to the relaxation of massless relativistic Weyl fermions after a sudden displacement from the center of a harmonic trap.
Domaines
Gaz Quantiques [cond-mat.quant-gas]Origine | Fichiers produits par l'(les) auteur(s) |
---|