Functional inequalities for Gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2018

Functional inequalities for Gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence

Résumé

The aim of this paper is to establish various functional inequalities for the convolution of a compactly supported measure and a standard Gaussian distribution on Rd. We especially focus on getting good dependence of the constants on the dimension. We prove that the Poincaré inequality holds with a dimension-free bound. For the logarithmic Sobolev inequality, we improve the best known results (Zimmermann, JFA 2013) by getting a bound that grows linearly with the dimension. We also establish transport-entropy inequalities for various transport costs.
Fichier principal
Vignette du fichier
BGMZ_LSI_for_convolutions.pdf (225.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01172549 , version 1 (08-07-2015)

Identifiants

Citer

Jean-Baptiste Bardet, Nathaël Gozlan, Florent Malrieu, Pierre-André Zitt. Functional inequalities for Gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence. Bernoulli, 2018, 24 (1), pp.333-353. ⟨10.3150/16-BEJ879⟩. ⟨hal-01172549⟩
368 Consultations
668 Téléchargements

Altmetric

Partager

More