A Real-Time, Multi-View Fall Detection System: a LHMM-Based Approach - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Circuits and Systems for Video Technology Year : 2008

A Real-Time, Multi-View Fall Detection System: a LHMM-Based Approach

Abstract

Automatic detection of a falling person in video sequences has interesting applications in video-surveillance and is an important part of future pervasive home monitoring systems. In this paper, we propose a multiview approach to achieve this goal, where motion is modeled using a layered hidden Markov model (LHMM). The posture classification is performed by a fusion unit, merging the decision provided by the independently processing cameras in a fuzzy logic context. In each view, the fall detection is optimized in a given plane by performing a metric image rectification, making it possible to extract simple and robust features, and being convenient for real-time purpose. A theoretical analysis of the chosen descriptor enables us to define the optimal camera placement for detecting people falling in unspecified situations, and we prove that two cameras are sufficient in practice. Regarding event detection, the LHMM offers a principle way for solving the inference problem. Moreover, the hierarchical architecture decouples the motion analysis into different temporal granularity levels, making the algorithm able to detect very sudden changes, and robust to low-level steps errors.

Dates and versions

hal-01172413 , version 1 (07-07-2015)

Identifiers

Cite

Nicolas Thome, Serge Miguet, Sébastien Ambellouis. A Real-Time, Multi-View Fall Detection System: a LHMM-Based Approach. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18 (11), pp.1522-1532. ⟨10.1109/TCSVT.2008.2005606⟩. ⟨hal-01172413⟩
129 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More