Adaptive kernel estimation of the baseline function in the Cox model with high-dimensional covariates - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Adaptive kernel estimation of the baseline function in the Cox model with high-dimensional covariates

Résumé

We propose a novel kernel estimator of the baseline function in a general high-dimensional Cox model, for which we derive non-asymptotic rates of convergence. To construct our estimator, we first estimate the regression parameter in the Cox model via a LASSO procedure. We then plug this estimator into the classical kernel estimator of the baseline function, obtained by smoothing the so-called Breslow estimator of the cumulative baseline function. We propose and study an adaptive procedure for selecting the bandwidth, in the spirit of Goldenshluger and Lepski [14]. We state non-asymptotic oracle inequalities for the final estimator, which leads to a reduction in the rate of convergence when the dimension of the covariates grows.
Fichier principal
Vignette du fichier
RevisionLemlerGuillouxTaupin.pdf (716.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01171775 , version 1 (06-07-2015)
hal-01171775 , version 2 (16-03-2016)

Identifiants

Citer

Agathe Guilloux, Sarah Lemler, Marie-Luce Taupin. Adaptive kernel estimation of the baseline function in the Cox model with high-dimensional covariates. 2015. ⟨hal-01171775v2⟩
427 Consultations
250 Téléchargements

Altmetric

Partager

More