Multi-dimensional Ratings for Research Paper Recommender Systems: A Qualitative Study - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Multi-dimensional Ratings for Research Paper Recommender Systems: A Qualitative Study

Résumé

Research paper recommender systems (RSs) aim to alleviate information overload for researchers. Existing approaches using collaborative filtering or hybrid approaches typically allow only one rating criterion (overall liking) for users to evaluate papers. We conducted a focus group qualitative study to explore the most important criteria for rating research papers that can be used to control the paper recommendation by enabling users to set the weight for each criterion. We investigate also the effect of using different rating criteria on the user interface design and how the user can control the weight of the criteria.
Fichier principal
Vignette du fichier
fullpaper2.pdf (573.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01171132 , version 1 (02-07-2015)

Identifiants

  • HAL Id : hal-01171132 , version 1

Citer

Shaikhah Alotaibi, Julita Vassileva. Multi-dimensional Ratings for Research Paper Recommender Systems: A Qualitative Study. International Symposium on Web AlGorithms, Jun 2015, Deauville, France. ⟨hal-01171132⟩

Collections

ISWAG15
128 Consultations
305 Téléchargements

Partager

More