Anomaly Detection Based on Confidence Intervals Using SOM with an Application to Health Monitoring - Archive ouverte HAL
Chapitre D'ouvrage Année : 2014

Anomaly Detection Based on Confidence Intervals Using SOM with an Application to Health Monitoring

Résumé

We develop an application of SOM for the task of anomaly detection and visualization. To remove the effect of exogenous independent variables, we use a correction model which is more accurate than the usual one, since we apply different linear models in each cluster of context. We do not assume any particular probability distribution of the data and the detection method is based on the distance of new data to the Kohonen map learned with corrected healthy data. We apply the proposed method to the detection of aircraft engine anomalies.
Fichier principal
Vignette du fichier
wsom2014.pdf (474.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01169573 , version 1 (29-06-2015)

Identifiants

Citer

Anastasios Bellas, Charles Bouveyron, Marie Cottrell, Jérôme Lacaille. Anomaly Detection Based on Confidence Intervals Using SOM with an Application to Health Monitoring. T. Villmann, F.M. Schleif, M. Kaden, M. Lange. Advances in Self-Organizing Maps and Learning Vector Quantization Proceedings of th 10th International Workshop WSOM 2014, 295, Springer, pp.145-155, 2014, AISC,, ⟨10.1007/978-3-319-07695-9_14⟩. ⟨hal-01169573⟩
201 Consultations
922 Téléchargements

Altmetric

Partager

More