Modeling multiple hop wireless networks with varying transmission power and data rate
Résumé
Wireless multi-hop networks can vary both the transmission power and modulation of links. Those two parameters provide several design choices, which influence the performance of wireless multi-hop networks, e.g. minimize energy consumption, increase throughput, reduce contention, and maximize link quality. However, only network-wide metrics are considered in previous works. Further, per-flow performance metrics, such as the end-to-end energy consumption and latency, have not been studied. Those parameters directly impact the experience of users, which should be considered in capacity and performance studies. Our model incorporates per-flow metrics while also considering fading, contention, hidden terminals and packet error probabilities. We instantiate the model into an IEEE 802.11 multi-hop scenario, and evaluate common routing decisions such as maximizing link quality, maximizing data rate or minimizing the transmission power.