Wavelet-based Image Deconvolution and Reconstruction - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Wavelet-based Image Deconvolution and Reconstruction

Résumé

Image deconvolution and reconstruction are inverse problems which are encountered in a wide array of applications. Due to the ill-posedness of such problems, their resolution generally relies on the incorporation of prior information through regularizations, which may be formulated in the original data space or through a suitable linear representation. In this article, we show the benefits which can be drawn from frame representations, such as wavelet transforms. We present an overview of recovery methods based on these representations: (i) variational formulations and non-smooth convex optimization strategies, (ii) Bayesian approaches, especially Monte Carlo Markov Chain methods and variational Bayesian approximation techniques, and (iii) Stein-based approaches. A brief introduction to blind deconvolution is also provided.
Fichier principal
Vignette du fichier
main_wiley_hal.pdf (4.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01164833 , version 1 (17-06-2015)
hal-01164833 , version 2 (23-09-2015)
hal-01164833 , version 3 (22-04-2016)
hal-01164833 , version 4 (21-10-2016)
hal-01164833 , version 5 (24-08-2017)

Identifiants

  • HAL Id : hal-01164833 , version 1

Citer

Nelly Pustelnik, Amel Benazza-Benhayia, Yuling Zheng, Jean-Christophe Pesquet. Wavelet-based Image Deconvolution and Reconstruction. 2015. ⟨hal-01164833v1⟩
1278 Consultations
1635 Téléchargements

Partager

More