Uncertainty quantification and sensitivity analysis in electrical machines with stochastically varying machine parameters - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Uncertainty quantification and sensitivity analysis in electrical machines with stochastically varying machine parameters

Science Arts & Métiers (SAM)

Résumé

Electrical machines that are produced in mass production suffer from stochastic deviations introduced during the production process. These variations can cause undesired and unanticipated side-effects. Until now, only worst case analysis andMonte-Carlo simulation have been used to predict such stochastic effects and reduce their influence on the machine behavior. However, these methods have proven to be either inaccurate or very slow. This paper presents the application of a polynomialchaosmeta-modeling at the example of stochastically varying stator deformations in a permanent-magnet synchronous machine. The applied methodology allows a faster or more accurate uncertainty propagation with the benefit of a zero-cost calculation ofsensitivity indices, eventually enabling an easier creation of stochastic insensitive, hence robust designs.
Fichier principal
Vignette du fichier
L2EP_CEFC_2015_CLENET.pdf (533.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01163840 , version 1 (04-12-2017)

Identifiants

Citer

Peter Offermann, Hung Mac, Thu Trang Nguyen, Stephane Clenet, H. de Gersem, et al.. Uncertainty quantification and sensitivity analysis in electrical machines with stochastically varying machine parameters. CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, May 2014, Annecy, France. pp.1-4, ⟨10.1109/TMAG.2014.2354511⟩. ⟨hal-01163840⟩
308 Consultations
245 Téléchargements

Altmetric

Partager

More