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Abstract—Electrical machines that are produced in mass production suffer from stochastic deviations introduced during the
production process. These variations can cause undesired and unanticipated side-effects. Until now, only worst case analysis and
Monte-Carlo simulation have been used to predict such stochastic effects and reduce their influence on the machine behavior.
However, these methods have proven to be either inaccurate or very slow. This paper presents the application of a polynomial-
chaos meta-modeling at the example of stochastically varying stator deformations in a permanent-magnet synchronous machine.
The applied methodology allows a faster or more accurate uncertainty propagation with the benefit of a zero-cost calculation of
sensitivity indices, eventually enabling an easier creation of stochastic insensitive, hence robust designs.

Index Terms—electrical machines, production tolerances, spectral stochastic finite element method, uncertainty quantification

I. INTRODUCTION

Electrical machines are subjected to stochastic variations
introduced by the production process [1]. Subsequently, each
produced machine instance may deviate slightly with respect
to its ideal and initial design. As a result, parasitic effects –
such as for instance undesired harmonic components in the
machine’s torque – can occur and will negatively influence
its overall performance (e.g. by radiating unanticipated and
undesired noise). One possibility to elude these problems is
the creation of robust machine designs [2]. However, finding
a robust design has proven to be difficult until now. This
difficulty stems from the fact that the standard finite element
method (FEM) neither provides any intrinsic possibilities for
sensitivity analysis of its (post-processed) results, nor any suit-
able way to propagate the occurring stochastic deviations onto
the considered output sizes. Accordingly, the available tools to
generate robust designs have been limited mostly to worst case
analysis, Taguchi-Design of Experiments (DoE) and crude
Monte-Carlo (MC) simulation until now. While worst case
analysis proves to be imprecise, MC simulations (or DoE)
in combination with the FEM result in high computational
costs or, when reducing the required sample count, result in
inaccurate predictions again.

In order to provide better tools for the creation of robust
designs, this paper presents the application of a polynomial-
chaos (PC) meta-modeling [3] technique for the simulation
of an electrical machine. The choice of a PC approach is
motivated by the easy calculation of sensitivity indices within
the PC-framework, without being bound to the necessity to
model all input deviations as Gaussian (as it is the case with

e.g. kriging). The required PC methodology is briefly recalled
in section II.

Afterwards, the technique is applied to take account of
stochastic geometry deformation modes that are imposed on
an electrical machine’s stator by being pressed into a housing.
While section III details the chosen modeling, section IV anal-
yses the deformation modes’ influence on the cogging torque
of the considered permanent-magnet synchronous machine by
calculating the Sobol sensitivity indices directly from the PC
meta-model. This way, a faster or more accurate tool for uncer-
tainty propagation is provided along with the straightforward
possibility to calculate sensitivity indices, hence enabling an
easier and faster way to calculate and create robust designs.

II. METHODOLOGY

In the following, an electrical machine with stochastically
deviating dimensions is considered. We assume that the oc-
curring deviations can be expressed as function of a random
vector of variables x = (x1, x2, ..., xn). The probability
density function (PDF) of x is supposed to be known and
stochastically independent1 . Due to the randomness contained
in x, all studied machine output quantities M also become
random variables in dependence of x1, x2, ..., xn and cannot
be calculated with a single finite element (FE) calculation
anymore. Hence, the overall goal is to find a suitable way
to quantify the randomness contained in the machine’s output
quantities M(x).

A. Polynomial chaos expansion

One way to characterize M is to determine an explicit
expression or approximation M̃(x) ≈ M(x), a so-called
meta-model. The polynomial chaos theory [6] enables the

1for stochastic dependent problems the introduction of copulas can be used
to relax this restriction, see [4] along with [5]



calculation of such an explicit representation

M(x) ≈ M̃(x) =
P∑
i=0

αiψi(x) (1)

by approximating the analyzed output quantity M(x) as a
function of a polynomial basis ψi(x), i ∈ N and its scalar
polynomial coefficients αi. For a given PDF, [6] proposes rules
for the construction of the polynomials ψi(x). The remaining
task is the determination of the coefficients αi.

B. Coefficient determination
Two different approaches which allow the calculation of the

αi are projection and regression [4]. In the beginning, both
methods require Q realization pairs (xk,M(xk)) of the input
random vector x and its corresponding output M(x) in order
to find αi which fulfill

{αi} = arg(min

{
E
[
M(x)− M̃(x)

]2}
) . (2)

Afterwards, the projection method takes advantage of the
polynomial basis’ orthogonality by calculating the coefficients
as

αi = E [M(x)ψi(x)] (3)

where E [ ] is the expectation. The implicit integral in the right
hand side of (3) then can be estimated by

E [M(x)ψi(x)] ≈
Q∑

k=1

M(xk)ψi(xk)ωk (4)

with ωk representing the associated integration weight to the
point xk. The values of ωk depend on the chosen numerical
integration scheme, e.g. in MC-integration ωk = 1

Q .

In the regression method, the integral E
[
M(x)− M̃(x)

]2
in the right hand side of (2) is approximated by

E
[
M(x)− M̃(x)

]2
≈ 1

Q

Q∑
k=1

[
M(xk)− M̃(xk)

]2
. (5)

From (5), (2) and (1), it can deduced that

{αi} =
(
Ψ ·ΨT

)−1 ·Ψ ·M , (6)

where

M =

M(x1)
...

M(xN )

 (7)

and

Ψ =

ψ0(x1) · · · ψ0(xN )
...

. . .
...

ψP (x1) · · · ψP (xN )

 . (8)

In a continuous environment, both approaches create identical
results for an infinite polynomial base. With the introduction of
a discretization,

(
Ψ ·ΨT

)−1
differs from the identity matrix,

yielding more accurate results with use of the regression
method. Hence, the regression method is typically preferred
in application, even though the inversion of (Ψ · ΨT ) is not
guaranteed to be numerically stable [4].

For both methods – projection and regression – the choice
of the Q realisations xk influence the methods’ efficiency.

Several works have shown that low discrepancy sequences
(for example Sobol sequences) are suitable and outperform
randomdly drawn samples. Nevertheless, the number of re-
alizations Q has to be chosen adequately in order to obtain
good approximations that yield a M̃(x) close toM(x). If the
number of input random variables n is high, then the number Q
can become excessive large. In case of the regression method,
the number Q must be e.g. at least equal to the number
of contributing polynomial chaos terms P + 1 that is then
calculated as

P + 1 =
(n+ pmax)!

n! · pmax!
, (9)

where pmax is the maximum degree of the polynomial chaos
[6]. In the end, the time required to calculate all realizations
M(xk), k ∈ Q can become a challenge. To overcome
this difficulty, one seeks only polynomial chaos terms whose
impact on M(x) is significant [7], as has been done in the
present work. This way, the number of polynomial chaos
terms and hence the number of realizations Q can be reduced
drastically.

C. Post-processing
Based on the polynomial coefficients, stochastic moments

as the model’s mean value µ and its variance σ2 can be
calculated. The definition of the expectancy value provides

µ ≈ E
[
M̃(x)

]
=

∫ ∞
−∞
M̃(x) · fx(x)dx (10)

and after inserting the meta-model’s definition

M̃(x) =
∑
i

αi · ψi(x) (11)

from equation (11) into equation (10) one can exploit the
polynomials’ orthonormality to deduce that:

µ ≈
∑
i

αi · δi0 = α0 . (12)

The derivation of the variance σ2 occurs analogously and
results in

σ2 ≈
∑
i

α2
i . (13)

Eventually, a sensitivity analysis can be performed to eval-
uate the impact of each input’s random variable xi on the
output’s variation σ2

M. To do so, Sobol sensitivity indices
[8] are a suitable choice. The calculation of Sobol sensitivity
indices yields values in the interval [0, 1] with Si close to 0
representing a weak influence and Si close to 1 indicating a
high impact of the input i on the variation ofM. Once that the
approximation M̃ in the polynomial chaos expansion form is
available, the Sobol indices can be deduced straightforwardly
[9], [10]. Applying the sensitivity indices, design paradigms
as robust design and tolerance allocation can finally be imple-
mented.

III. APPLICATION

The examination’s goal is to analyze the effect of randomly
occurring static pressures that deform a PMSM’s stator. We
here investigate the pressures’ influence on the machine’s
cogging torque in particular. Possible sources for such pressure
can be e.g. stator welding seams or fixation points of the stator



in its housing. Here it is assumed, that the pressure points
occur symmetrically distributed over the stator’s circumfer-
ence, and thus cause stator deformation modes as depicted in
figure 1.

Fig. 1. Stator deformation modes number 2, 4, 6.

Two effects of this deformation are studied at first sepa-
rately, later on also in combination:

1) The applied pressure on the stator eventually results
in variations of the air gap. To avoid the need for a
complete mesh remodeling, these changes have been
simplified and are represented as variations of the sta-
tor tooth height (parameter l1 in figure 2), effectively
creating a similar air gap variation.

2) The stator’s deformation causes variations in the slot
opening width between all stator teeth. This effect is
modeled with parameter l2 (compare figures 2 and 3).

Applying conformal mapping theory in an approach com-
parable to [11], the influence of the first twenty modes has
been tested for both parameters. Significant changes in the
cogging torque can only be observed for the deformation
modes D = {1, 2, 3, 6, 12}. Hence, these modes have been
used to model the parameter input variations as

l1(n) = l01 + a0 +
∑
k∈D

ak · sin
(
k

2πn

36
+ a∗k

)
(14)

l2(n) = l02 + b0 +
∑
k∈D

bk · sin
(
k

2πn

36
+ b∗k

)
(15)

with n representing the stator tooth number, k as mode
number, l0i being the nominal parameter values, ak & bk as
independent uniform random variables for the mode k defined
in the interval [−0.02; 0.02], and a∗k & b∗k as independent
uniform random variables for the mode k defined in the
interval [0; 2π].

IV. RESULTS

In order to build the PC meta-models of the presented
variations, an A-Φ formulation FE-model is employed with

l2 l1

Fig. 2. Stator with varying tooth height (l1) and slot opening width (l2).

Fig. 3. Variation of the stator’s slot opening width (parameter l2). The dashes
represent position and deformation of the slot opening width introduced by
the occurrence of mode number 6.

a mesh of 103,126 nodes. Introducing a parallelization with
20 calculation nodes, 400 evaluation points are calculated in
4 days. Within these simulations, the analyzed geometry vari-
ations are considered by the transformation method presented
in [12]. At first, the influence of the parameters l1 and l2
on cogging torque is studied separately, afterwards combined
simulations with both parameters are executed. Within the
meta-models, the cogging torque is directly analyzed in its
frequency domain as multiples of one pole pitch of the motor
with τ = π/3. With the help of the Sobol sensitivity indices
it can then be determined which cogging torque harmonic is
originating from or influenced by which input random variable.
Figure 4 summarizes the analysis’ work-flow.

The simulations allow the following conclusions for the
given geometry:

A. Separate variations of l1 and l2:

For both parameter variations, the 6th harmonic of the pole
pitch (here 2p = 6) has got a dominating influence on the
mean value. This behavior is conform to expectations due to
the 36 stator teeth of the machine. While the effective air
gap distortion modeled by the tooth height variations mainly
influences the variance of the harmonics 1st and 2nd, the slot
opening width yields a dominating variance again for the 6th

output harmonic. The accordance with expectations confirms
the method’s correctness. The sensitivity analysis allows to
give the following influence mapping of the relevant output
harmonics:
• Harmonic 1 is influenced mainly by a6 and b6.
• Harmonic 2 is influenced mainly by a12 and b12.
• Harmonic 6 and 12 are influenced mainly by a0 and b0 .

B. Interaction of both parameters

As the influence of the input modes Dneglect = {1, 2, 3}
is very small in the separate parameter variations, the corre-
sponding input random variables are discarded for the joint

FEM gPC
l1

l2

ak, a
∗
k

bk, b
∗
k

Tc(f) ST (a, b)

Fig. 4. Simulation flow: Tooth height (l1) and slot opening width (l2) are
calculated from the input random variables ak, a

∗
k, bk, b

∗
k and are used in

the FEM. The FEM’s results together with the corresponding input random
variables are employed to calculate the PC meta-model, which enables a
straightforward calculation of the Sobol sensitivity indices ST (a, b).



Harm.
of τp Mean Variance Sobol a0 a6 a∗6 a12 a∗12 b0 b6 b∗6 b12 b∗12

1 0.0464 0.816e-3 total 0.057 0.869 0.047 0.048 0.037 0.058 0.050 0.048 0.052 0.055
1st ord. 0.000 0.816 0.001 0.000 0.000 0.000 0.002 0.001 0.003 0.003

2 0.0373 0.539e-3 total 0.028 0.035 0.024 0.918 0.031 0.029 0.032 0.035 0.023 0.043
1st ord. 0.002 0.001 0.000 0.887 0.001 0.001 0.002 0.000 0.000 0.001

6 0.1822 0.024e-3 total 0.543 0.000 0.000 0.000 0.000 0.456 0.000 0.000 0.000 0.000
1st ord. 0.543 0.000 0.000 0.000 0.000 0.456 0.000 0.000 0.000 0.000

12 0.0186 0.293e-6 total 0.105 0.001 0.001 0.001 0.001 0.895 0.001 0.001 0.001 0.001
1st ord. 0.103 0.000 0.000 0.000 0.000 0.893 0.000 0.000 0.000 0.000

TABLE I
SIMULATION RESULTS VARYING l1 & l2 : MEAN, VARIANCE AND SENSITIVITY INDICES CALCULATED FROM THE META-MODEL.
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Fig. 5. Comparison of ideal cogging torque compared to a realization that
shows a significant low frequency effect (dashed).

influence analysis. The joint simulation’s results are given in
table I. It can be observed, that
• The influence of all phase shifts (a∗k, b

∗
k) in the input

modes is very weak.
• Total and first order Sobol indices of each random

variable are close to equal. It can be deducted, that
there are nearly no interactions within the model for the
simultaneous occurrence of l1 and l2.

• The variance of the harmonics 1 and 2 is dominant
compared to the variance of the harmonics 6 and 12.
One can reason that the occurring low frequency effect
is significant. This result is also shown in Figure 5.

V. CONCLUSIONS

This paper presents the application of a non-intrusive
polynomial-chaos meta-modeling technique for uncertainty
quantification in electrical machines. In particular, the influ-
ence of randomly occurring stator deformation modes on the
cogging torque of a permanent-magnet synchronous machine
is modeled, propagated and assessed with the help of Sobol
sensitivity indices. The utilization of the gPC based uncer-
tainty propagation reduces the required computational effort.
Furthermore, it allows to derive a direct correlation between
the modeled input random variables and the harmonic com-
ponents of the machine’s cogging torque. This step eventually
simplifies the creation of robust machine designs by providing
a cause-effect mapping.

The presented methodology is universal and can be applied
to arbitrary tolerances in electrical machines, given that the

stochastic parameters can be expressed within the FE-model.
Future work will investigate the impact of tolerances in the soft
magnetic material properties with respect to loss calculations
in electrical machines.
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spectral methods,” Habilitation à diriger des recherches, Université
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