Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code - Archive ouverte HAL
Article Dans Une Revue Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Année : 2013

Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code

L. Raimondi
  • Fonction : Auteur
D. Cocco
  • Fonction : Auteur
A. Abrami
  • Fonction : Auteur
M. de Marco
  • Fonction : Auteur
C. Fava
  • Fonction : Auteur
S. Gerusina
  • Fonction : Auteur
R. Gobessi
  • Fonction : Auteur
E. Pedersoli
M. Kiskinova
  • Fonction : Auteur
Philippe Zeitoun
G. Dovillaire
  • Fonction : Auteur
D. Gauthier
  • Fonction : Auteur
EDF
M. Zangrando
  • Fonction : Auteur

Résumé

FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.

Dates et versions

hal-01163759 , version 1 (15-06-2015)

Identifiants

Citer

L. Raimondi, C. Svetina, N. Mahne, D. Cocco, A. Abrami, et al.. Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 710, pp.131-138. ⟨10.1016/j.nima.2012.11.039⟩. ⟨hal-01163759⟩
188 Consultations
0 Téléchargements

Altmetric

Partager

More