Poisson statistics for matrix ensembles at large temperature - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2015

Poisson statistics for matrix ensembles at large temperature

Résumé

In this article, we consider $\beta$-ensembles, i.e. collections of particles with random positions on the real line having joint distribution $$\frac{1}{Z_N(\beta)}|\Delta(\lambda)|^\beta e^{- \frac{N\beta}{4}\sum_{i=1}^N\lambda_i^2}d \lambda,$$ in the regime where $\beta\to 0$ as $N\to\infty$. We briefly describe the global regime and then consider the local regime. In the case where $N\beta$ stays bounded, we prove that the local eigenvalue statistics, in the vicinity of any real number, are asymptotically to those of a Poisson point process. In the case where $N\beta\to\infty$, we prove a partial result in this direction.

Dates et versions

hal-01163065 , version 1 (12-06-2015)

Identifiants

Citer

Florent Benaych-Georges, Sandrine Péché. Poisson statistics for matrix ensembles at large temperature. Journal of Statistical Physics, 2015, 161 (3), pp.633-656. ⟨10.1007/s10955-015-1340-8⟩. ⟨hal-01163065⟩
117 Consultations
0 Téléchargements

Altmetric

Partager

More