RIGIDITY VERSUS SYMMETRY BREAKING VIA NONLINEAR FLOWS ON CYLINDERS AND EUCLIDEAN SPACES - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

RIGIDITY VERSUS SYMMETRY BREAKING VIA NONLINEAR FLOWS ON CYLINDERS AND EUCLIDEAN SPACES

Résumé

This paper is motivated by the characterization of the optimal symmetry breaking region in Caffarelli-Kohn-Nirenberg inequalities. As a consequence, optimal functions and sharp constants are computed in the symmetry region. The result solves a longstanding conjecture on the optimal symmetry range. As a byproduct of our method we obtain sharp estimates for the principal eigenvalue of Schrödinger operators on some non-flat non-compact manifolds, which to the best of our knowledge are new. The method relies on generalized entropy functionals for nonlinear diffusion equations. It opens a new area of research for approaches related to carré du champ methods on non-compact manifolds. However key estimates depend as much on curvature properties as on purely nonlinear effects. The method is well adapted to functional inequalities involving simple weights and also applies to general cylinders. Beyond results on symmetry and symmetry breaking, and on optimal constants in functional inequalities, rigidity theorems for nonlinear elliptic equations can be deduced in rather general settings.
Fichier principal
Vignette du fichier
DEL2015-submitted.pdf (622.62 Ko) Télécharger le fichier
Figure.pdf (102.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01162902 , version 1 (11-06-2015)
hal-01162902 , version 2 (21-04-2016)

Identifiants

  • HAL Id : hal-01162902 , version 1

Citer

Jean Dolbeault, Maria J. Esteban, Michael Loss. RIGIDITY VERSUS SYMMETRY BREAKING VIA NONLINEAR FLOWS ON CYLINDERS AND EUCLIDEAN SPACES. 2015. ⟨hal-01162902v1⟩
278 Consultations
242 Téléchargements

Partager

More