Finite group actions and cyclic branched covers of knots in $\mathbf{S}^3$ - Archive ouverte HAL
Article Dans Une Revue Journal of topology Année : 2018

Finite group actions and cyclic branched covers of knots in $\mathbf{S}^3$

Résumé

We show that a hyperbolic $3$-manifold can be the cyclic branched cover of at most fifteen knots in $\mathbf{S}^3$. This is a consequence of a general result about finite groups of orientation preserving diffeomorphisms acting on $3$-manifolds. A similar, although weaker, result holds for arbitrary irreducible $3$-manifolds: an irreducible $3$-manifold can be the cyclic branched cover of odd prime order of at most six knots in $\mathbf{S}^3$.
Fichier principal
Vignette du fichier
1506.01895v2.pdf (528.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01160794 , version 1 (05-07-2023)

Identifiants

Citer

Michel Boileau, Clara Franchi, Mattia Mecchia, Luisa Paoluzzi, Bruno Zimmermann. Finite group actions and cyclic branched covers of knots in $\mathbf{S}^3$. Journal of topology, 2018, 11 (2), pp.283-308. ⟨10.1112/topo.12052⟩. ⟨hal-01160794⟩
120 Consultations
36 Téléchargements

Altmetric

Partager

More