Finite group actions and cyclic branched covers of knots in $\mathbf{S}^3$
Résumé
We show that a hyperbolic $3$-manifold can be the cyclic branched cover of at most fifteen knots in $\mathbf{S}^3$. This is a consequence of a general result about finite groups of orientation preserving diffeomorphisms acting on $3$-manifolds. A similar, although weaker, result holds for arbitrary irreducible $3$-manifolds: an irreducible $3$-manifold can be the cyclic branched cover of odd prime order of at most six knots in $\mathbf{S}^3$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|