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Finite group actions and cyclic branched covers of

knots in S3
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June 14, 2019

Abstract

We show that a hyperbolic 3-manifold can be the cyclic branched cover

of at most fifteen knots in S
3. This is a consequence of a general result

about finite groups of orientation preserving diffeomorphisms acting on

3-manifolds. A similar, although weaker, result holds for arbitrary irre-

ducible 3-manifolds: an irreducible 3-manifold can be the cyclic branched

cover of odd prime order of at most six knots in S
3.

AMS classification: Primary 57S17; Secondary 57M40; 57M60; 57M12;

57M25; 57M50.

Keywords: Finite group actions, homology spheres, geometric structures

in dimension 3, cyclic branched covers of knots.

1 Introduction

A classical way of presenting certain closed orientable 3-manifolds is by taking
cyclic covers of S3 branched along knots. This article deals with the question
of understanding in how many ways a given manifold can be presented as the
total space of a cyclic branched cover of some knot. Given a closed orientable 3-
manifoldM , these different presentations are in one-to-one correspondence with
conjugacy classes of the corresponding groups of deck transformations. These
are finite cyclic groups generated by periodic diffeomorphisms with connected
and non-empty fixed-point set, and orbit space homeomorphic to the 3-sphere.
We call such diffeomorphisms hyperelliptic rotations.

For example, the 3-sphere is the n-fold cyclic branched cover of the trivial
knot for any integer n ≥ 2. On the other hand, due to the orbifold theorem,
it is known that for a closed 3-manifold which is not homeomorphic to S3, the
order of a hyperelliptic rotation is bounded by a constant depending on the
manifold, see [Ko1]. So when M is not the 3-sphere S3 one may ask whether
there is a universal upper bound for the number of distinct conjugacy classes of
groups of deck transformations associated to cyclic branched covers. We show
that this is indeed the case if the manifold is hyperbolic. For the general case of

∗Partially supported by ANR project 12-BS01-0003-01
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irreducible manifolds we obtain a universal bound only for the groups of deck
transformations that have odd prime order.

Establishing such a universal upper bound for hyperbolic 3-manifolds boils
down to bounding the number of conjugacy classes of cyclic groups of isometries
generated by hyperelliptic rotations inside the finite group of isometries of the
manifold. Since any finite group acts on some hyperbolic 3-manifold [Ko3], [CL]
we have to consider any finite group action on a 3-manifold. The proof, however,
only uses that the manifold is not S3, so our main result is the following

Theorem 1. Let M be a closed orientable connected 3-manifold which is not
homeomorphic to S3. Let G be a finite group of orientation preserving dif-
feomorphisms of M . Then G contains at most six conjugacy classes of cyclic
subgroups generated by a hyperelliptic rotation of order not a power of 2.

Thanks to previous work of one of the authors ([Mec]) and of M. Reni ([Re])
on hyperelliptic rotations of orders a power of 2 (see Section 7, Theorem 9), we
deduce:

Corollary 1. Let M be a closed orientable connected 3-manifold which is not
homeomorphic to S3. Let G be a finite group of orientation preserving diffeo-
morphisms of M . Then G contains at most fifteen conjugacy classes of cyclic
subgroups generated by a hyperelliptic rotation. Moreover, the set of orders of
such subgroups has cardinality at most nine.

The above corollary applies in particular to the orientation preserving group
of isometries Isom+(M) of a closed hyperbolic 3-manifold M which is finite.
Since any finite group of orientation preserving diffemorphisms acting on M is
conjugate to a subgroup of Isom+(M), the following is a direct consequence of
Corollary 1

Corollary 2. A closed orientable connected hyperbolic 3-manifold M is a cyclic
cover of S3 along a knot for at most fifteen distinct knots. The possible branching
orders are at most nine.

From Corollary 1 it is also possible to derive a characterisation of the 3-
sphere:

Corollary 3. A closed, connected, orientable 3-manifold M is homeomorphic
to S3 if and only if there is a finite goup G of orientation preserving diffeo-
morphisms of M such that G contains sixteen conjugacy classes of subgroups
generated by hyperelliptic rotations.

One interesting aspect of the proof of Theorem 1 is the substantial use of
finite group theory and the classification of finite simple groups. In particular,
it relies on previous works on finite groups acting on 3-manifolds by two of
the authors in [Mec2] and [MZ]. A crucial point is to control the rank of the
p-Sylow subgroup of a finite group acting on a 3-manifold. More precisely,
the proof of Theorem 1 splits into various cases, according to the structures
of the normalisers of the Sylow p-subgroups containing an element of order p
that is a power of a hyperelliptic rotation, where p is an odd prime number.
This structure is reflected in the symmetry group of the branching knot in
the quotient S3 of the manifold by the action of the hyperelliptic rotation, see
Proposition 5 in Section 2.
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Note that, although the proof of Theorem 1 uses the classification of finite
simple groups, it is enough to know that there is only a finite number of spo-
radic simple groups (that is, groups that are not alternating or of Lie type)
to conclude on the existence of a uniform bound on the number of conjugacy
classes. Since, as we have already observed, every finite group acts on some
closed orientable 3-manifold (see also Section 10) there is no way to avoid rely-
ing on the classification of finite simple groups to prove the above results. If we
only consider 3-manifolds that are Z/2-homology spheres though, the proof of
Theorem 1 (with the very same bounds) only relies on the Gorenstein-Harada
classification of simple groups with sectional 2-rank ≤ 4, [G], see Corollary 7.
Indeed, the homological condition provides control on the size of the Sylow
2-subgroups of finite groups that can act on such manifolds. For other topolog-
ical conditions that impose constraints on the finite groups that can act on a
manifold see [Mec2].

It follows from the proof of Theorem 1 that the existence of at least four
distinct conjugacy classes of hyperelliptic rotations of orders not powers of 2 in a
finite group G of orientation preserving diffeomorphisms of a closed 3-manifold
imposes constraints on the structure of G. A description of the structure of G,
which is somehow technical, is given in Proposition 11.

Irreducible 3-manifolds

Theorem 1 has several geometric consequences, notably on the different ways
a given manifold can appear as the total space of a cyclic cover of S3 branched
along a knot, without requiring that the manifold is hyperbolic.

Theorem 2. Let M be a closed orientable connected irreducible 3-manifold.
Then there are at most six inequivalent knots in S3 having M as cyclic branched
cover of odd prime order

Theorem 2 follows from Theorem 1 and the existence of an equivariant geo-
metric decomposition for a closed irreducible 3-manifold M with finite effective
and non free group action, according to the orbifold theorem, see for example
[BoP], and also [BLP], [CHK], [KL].

Remark 1. a) Note that one cannot hope to extend the result of Theorem 2
to arbitrary prime orders. Indeed, although a universal bound exists on the
number of knots that can be double covered by a given hyperbolic manifold by
work of Reni [Re], no such bound exists in general. In fact, given any integer
n there are infinitely many closed orientable Seifert fibred 3-manifolds with at
least n conjugacy classes of hyperelliptic rotations of order 2, see Remark 14 in
Section 9.1. As in the case of Seifert fibred manifolds, other types of toroidal
manifolds, that is manifolds with a non trivial JSJ-decomposition, can also
admit arbitrarily many conjugacy classes of hyperelliptic rotations of order 2.
As a consequence the finiteness result of Theorem 2 does not hold for 2-fold
branched covers in general.

b) Also, one cannot extend the result of Theorem 2 to arbitrary orders
that are not powers of 2, like in Theorem 1: in Section 9.1 we give examples
of closed, irreducible, orientable Seifert fibered 3-manifolds with an arbitrarily
large number of conjugacy classes of cyclic groups generated by hyperelliptic
rotations of odd, but not prime, orders, see Proposition 14. Our examples are
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not rational homology spheres, while the primeness assumption for the orders
of the hyperelliptic rotations forces the manifold M to be a rational homology
sphere, see Remark 2 in Section 2.

Arbitrary 3-manifolds

Using the decomposition of a closed orientable connected 3-manifold as a
connected sum of prime manifolds, we deduce from Theorem 2 an upper bound
on the number of odd primes that can occur as orders of hyperelliptic rotations
of arbitrary closed 3-manifolds. Remark that for any k ∈ N and every odd
prime p there are non prime 3-manifolds that are the p-fold cyclic covers of at
least k non equivalent knots, so that Theorem 2 does not generalise to arbitrary
manifolds.

Corollary 4. Let M be a closed (orientable) connected 3-manifold which is
not homeomorphic to the 3-sphere S3. Then M is a p-fold cyclic cover of S3

branched along a knot for at most six distinct odd prime numbers p.

In [BPZ] three of the authors showed that the upper bound is 3 for the num-
ber of odd prime orders of hyperelliptic rotations acting on an integral homology
sphere. In that case, the proof relies heavily on the restrictions on finite groups
acting on integral homology 3-spheres. Such restrictions cannot exist in general
since, as we observed at the beginning, every finite group does act on some
closed orientable 3-manifold. Even if we only consider cyclic branched covers
of knots of prime orders, which are rational homology spheres, no restriction
can be obtained a priori, for every finite group acts on some rational homology
sphere [CL]: the actions constructed in [CL] are free, but the same proof shows
that for each finite group G it is also possible to construct a faithful and non
free action of G on some rational homology sphere (see the Section 10 for more
details on this).

At this point we do not know if the bound of Corollary 4 is sharp. So far,
only exemples of manifolds that are p-fold cyclic covers of S3 branched along
a knot for three distinct odd primes p and for p = 2 are known. Exemples
are provided, for instance, by Brieskorn spheres of type Σ(p, q, r), where p, q,
and r are three pairwise different odd primes: Σ(p, q, r) is the p-fold (resp. q-
fold and r-fold) cyclic cover of S3 branched along the torus knot T (q, r) (resp.
T (p, r) and T (p, q)) as well as the double branched cover of a Montesinos knot.
Examples of hyperbolic manifolds that are p-fold cyclic covers of S3 branched
along a knot for three distinct odd primes p can also be exhibited [RZ2].

Corollary 4 gives yet another characterisation of the 3-sphere, S3:

Corollary 5. A closed orientable connected 3-manifold M is homeomorphic to
S3 if and only if M is a p-cyclic cover of S3 branched along a knot for at least
seven distinct odd prime numbers.

The paper is organised as follows. In Section 2 we define what (hyperel-
liptic) rotations are and determine different types of algebraic properties and
constraints that they must satisfy. In Section 3, we give a proof of Theorem 1
under the extra hypothesis that the group G is solvable. In this case it is not
difficult to show that, up to conjugacy, all hyperelliptic rotations must commute.

4



The central part of the paper is consacrated to the proof of a weaker version
of Theorem 1, in which hyperelliptic rotations are assumed to have odd prime
order, namely:

Theorem 3. Let M be a closed orientable connected 3-manifold which is not
homeomorphic to S3. Let G be a finite group of orientation preserving dif-
feomorphisms of M . Then G contains at most six conjugacy classes of cyclic
subgroups generated by a hyperelliptic rotation of odd prime order.

In Section 4 we recall some standard definitions in finite group theory and
provide several preliminary results that will be used in the following. The actual
proof of Theorem 3 is split into two cases according to different properties of
the hyperelliptic rotations contained in G and their associated quotient knots.
In Section 5 we assume that at least one of the knots is not self-symmetric (see
Section 2 for a definition and the translation of this property into algebraic
terms), while in Section 6 we assume that none is. In Section 7 we explain how
the proof of Theorem 1 can be reduced to that of Theorem 3. The reduction
of the proof relies basically on the fact that the Sylow p-subgroup containing a
non-trivial power of a hyperelliptic rotation has the same structure as that of a
Sylow p-subgroup containing a hyperelliptic rotation of order p. In particular,
all the key ingredients and essential difficulties are already encountered in the
proof of Theorem 3. In this section we also give the proof of Corollary 1. In
Section 8 we show that Theorems 1 and 3 are trivially fulfilled if the manifold is
reducible, for no interesting finite group action exists on such manifolds. Section
9 is devoted to the proof of Theorem 2 and Corollary 4. More precisely, in
Section 9.1 we show that Theorem 2 holds for Seifert fibred manifolds, while in
Section 9.2 Theorem 2 is deduced from Theorem 3 for the remaining irreducible
3-manifolds, that is hyperbolic 3-manifolds, and 3-manifolds admitting a non
trivial JSJ-decomposition. Finally, in Section 10, we see why every finite group
acts non freely on some rational homology sphere.

2 Rotations and their properties

In this section we shall introduce certain special periodic diffeomorphisms and
establish some of their properties. Note that all through the paper, unless
otherwise stated, 3-manifold will mean orientable, connected, closed 3-manifold.
Also, all finite group actions by diffeomorphisms will be faithful and orientation
preserving.

Definition 1. Let ψ : M −→ M be a finite order diffeomorphism of a 3-
manifold M . We shall say that ψ is a rotation if it preserves the orientation
of M , Fix(ψ) is non-empty and connected, and Fix(ψ) = Fix(ψk) for all non
trivial powers ψk of ψ. Fix(ψ) will be referred to as the axis of the rotation.
Note that if ψ is a periodic diffeomorphism of prime order, then ψ is a rotation
if and only if Fix(ψ) = S1.

We shall say that a rotation ψ is hyperelliptic if the space of orbits M/ψ of
its action is S3.

Remark 2. Assume that ψ is a hyperelliptic rotation acting on a 3-manifold
M then:
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1. The natural projection fromM to the space of orbitsM/ψ of ψ is a cyclic
cover of S3 branched along a knot K = Fix(ψ)/ψ. The converse is also
true, that is any deck transformation generating the automorphism group
of a cyclic covering of S3 branched along a knot is a hyperelliptic rotation.

2. If the order of ψ is a prime p, then M is a Z/p-homology sphere [Go].

We start with a somehow elementary remark which is however central to
determine constraints on finite groups acting on 3-manifolds.

Remark 3. Let G ⊂ Diff+(M) be a finite group of diffeomorphisms acting on
a 3-manifold M . One can choose a Riemannian metric on M which is invariant
by G and with respect to which G acts by isometries. Let now ψ ∈ G be
a rotation. Since the normaliser NG(〈ψ〉) of ψ in G consists precisely of those
diffeomorphisms that leave the circle Fix(ψ) invariant, we deduce that NG(〈ψ〉)
is a finite subgroup of Z/2⋉ (Q/Z⊕Q/Z), where the nontrivial element in Z/2
acts by conjugation sending each element of Q/Z⊕Q/Z to its inverse. Note that
the elements of NG(〈ψ〉) are precisely those that rotate about Fix(ψ), translate
along Fix(ψ), or invert the orientation of Fix(ψ); in the last case the elements
have order 2 and non empty fixed-point set meeting Fix(ψ) in two points.

Note that if M 6= S3 and ψ is a hyperelliptic rotation of order n > 2, then
its centraliser CG(〈ψ〉) in G satisfies 1 −→ 〈ψ〉 −→ CG(〈ψ〉) −→ H −→ 1, where
H is cyclic, possibly trivial. This follows easily from the positive solution to
Smith’s conjecture which implies that any group of symmetries of a non-trivial
knot K (that is, any finite group of orientation-preserving diffeomorphisms of
S3 acting on the pair (S3,K)) is either cyclic or dihedral.

Definition 2. With the notation of the above remark, we shall call Fix(ψ)-
rotations the elements of NG(〈ψ〉) that preserve the orientation of Fix(ψ) and
Fix(ψ)-inversions those that reverse it.

Lemma 1. Consider two rotations contained in a finite group of orientation
preserving diffeomorphisms of a 3-manifold M .

1. A non trivial power of the first rotation commutes with a non trivial power
of the second, both of orders different from 2, if and only if the two rota-
tions commute.

2. AssumeM 6= S3. If the two rotations are hyperelliptic and their fixed-point
sets coincide, then they generate the same cyclic group (in particular they
have the same order).

Proof.
Part 1 The sufficiency of the condition being obvious, we only need to prove the
necessity. Remark that we can assume that both rotations act as isometries for
some fixed Riemannian metric on the manifold. To fix ideas, denote by ψ and ϕ
the two rotations and by g and f respectively their non trivial powers. Note that,
by definition, Fix(ψ) = Fix(g) and Fix(ϕ) = Fix(f). Since g and f commute,
g leaves invariant Fix(ϕ) = Fix(f) and thus normalises every rotation about
Fix(ϕ). Moreover g and ϕ commute, for the order of g is not 2 (see Remark 3).
In particular ϕ leaves Fix(ψ) = Fix(g) invariant and normalises every rotation
about Fix(ψ). The conclusion follows.
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Part 2 Reasoning as in Part 1, one sees that the two rotations commute. As-
sume, by contradiction, that the subgroups they generate are different. Under
this assumption, at least one of the two subgroups is not contained in the other.
Without loss of generality we can assume that 〈ϕ〉 6⊂ 〈ψ〉. Take the quotient of
M by the action of ψ. The second rotation ϕ induces a non-trivial rotation of S3

which leaves the quotient knot K = Fix(ψ)/ψ ⊂ S3 invariant. Moreover, this
induced rotation fixes pointwise the knot K. The positive solution to Smith’s
conjecture implies now that K is the trivial knot and thus M = S3, against the
hypothesis.

2.1 Rotations on Z/p-homology spheres

Let M be a Z/p-homology sphere, p a prime number. If ψ is a periodic diffeo-
morphism of order p acting on M then, according to Smith’s theory, either ψ
acts freely on M or it is a rotation. A generalisation of this fact is the following
result whose proof can be found in [MZ, Prop 4, page 679]:

Lemma 2. Let H ∼= Z/p⊕Z/p act faithfully on a Z/p-homology sphere. Then
either H contains precisely two cyclic subgroups generated by rotations or p = 2
and all three cyclic subgroups are generated by rotations.

The previous remark and the above lemma have the following consequence:

Proposition 1. Assume that the odd prime p is the order of a rotation f
inside a finite group of diffeomorphisms G acting faithfully on and preserving
the orientation of a Z/p-homology sphere M . The Sylow p-subgroup Sp of G is
either cyclic or of the form Z/pα ⊕ Z/pβ.

Proof.
Up to conjugacy we can assume that f ∈ Sp. According to Remark 3, the

normaliserN = NSp
(〈f〉) of 〈f〉 in Sp is either cyclic or of the form Z/pα⊕Z/pβ,

for p is odd. We want to show that N = Sp. According to [Su1, 1.5, page 88],
either N = Sp or there exists x ∈ NSp

(N)\N . If N is cyclic, then every element
of NSp

(N) must normalise the group generated by f so that N = Sp. We can
thus assume that N ∼= Z/pα ⊕ Z/pβ and consider its characteristic subgroup
H = Z/p ⊕ Z/p which contains f . H acts on M which is a Z/p-homology
sphere hence, according to Lemma 2, H contains precisely two cyclic subgroups
generated by rotations (one being generated by f and the other, say, by f ′).
Assume now, by contradiction, that N 6= Sp. We can then choose x as described
above. Since the order of x is odd, x cannot exchange Fix(f) and Fix(f ′), so x
must normalise the group generated by f and a contradiction is reached, proving
the proposition.

Proposition 2. Let G ⊂ Diff+(M) be a finite group acting on a Z/p-homology
sphere M . Let f ∈ G be a rotation of odd prime order p and S be a Sylow p-
subgroup of G containing f . Then NG(S) contains NG(〈f〉) with index at most
2 and contains an abelian subgroup of rank at most 2 with index at most 4. In
particular NG(S) is solvable.

Proof.
The Sylow p-subgroup S is described in Proposition 1 and NG(〈f〉) is de-

scribed in Remark 3: since S is abelian we clearly have S ⊂ NG(〈f〉). The
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normaliser of 〈f〉 in G contains Fix(f)-rotations and Fix(f)-inversions, hence
it is contained in NG(S). If each element in NG(S) normalises 〈f〉 (in particular
if S is cyclic), we are done. Otherwise S has rank two and contains precisely
two subgroups of order p generated by a rotation (the group generated by f
and another one; see Lemma 2). Each element contained in the complement
NG(S) \ NG(〈f〉) exchanges by conjugation these two cyclic groups, so the in-
dex of NG(〈f〉) in NG(S) is two.

2.2 Hyperelliptic rotations

The results of the previous subsection apply in particular to hyperelliptic ro-
tations of odd prime order p. Indeed, in Propositions 1 and 2 the condition
that M is a Z/p-homology sphere can be replaced by the condition that f is a
hyperelliptic rotation of order p, according to part 2 of Remark 2. Better still,
in what follows we will show that it suffices that f is a power of odd prime order
of a hyperelliptic rotation to reach the same conclusions.

Lemma 3. Let p be an odd prime and assume that H ∼= Z/p⊕Z/p acts faithfully
by orientation preserving diffeomorphisms on a 3-manifold M . Assume, more-
over, that H contains a non-trivial power f of a hyperelliptic rotation ϕ of M .
Then H contains at most two subgroups generated by elements with non-empty
fixed-point sets.

Proof.
First of all, it is not restrictive to assume that M is not homeomorphic to

S3, otherwise we are done by Lemma 2.
We need to prove that, besides the cyclic group generated by the rotation

f , H contains at most one other cyclic subgroup generated by an element g so
that Fix(g) 6= ∅.

Reasoning as in the proof of the first part of Lemma 1, the elements of
H commute with ϕ and thus induce symmetries of the non trivial knot K =
Fix(ϕ)/ϕ. Also, since ϕ commutes with every subgoup of H it leaves setwise
invariant each fixed-point set of cyclic subgroups of H .

We observe now that if G is a finite group acting by orientation preserv-
ing diffeomorphisms on a manifold and x, y ∈ G are two elements such that
Fix(x) = Fix(y) 6= ∅ then 〈x, y〉 is cyclic; in particular if x and y have the same
order they generate the same subgroup. This can be easily seen by considering
a G-equivariant Riemmanian structure on M .

As a consequence different cyclic subgroups inside H acting non freely must
have different fixed-point sets. Since H/〈f〉 maps to a rotation of S3 this implies
that at most one cyclic group other than 〈f〉 has non-empty fixed-point set.

The following proposition is just a restatement of Propositions 1 and 2 in
this setting and it is also proved in the very same way using the fact that by
Lemma 3 there are at most two cyclic subgroups of order p having non-empty
fixed-point set.

Proposition 3. Let G ⊂ Diff+(M) be a finite group acting on a 3-manifold
M . Let f ∈ G be an element of odd prime order p which is a non-trivial power
of a hyperelliptic rotation. Let S be a Sylow p-subgroup of G containing f . Then

8



• the Sylow p-subgroup S is either cyclic or the product of two cyclic groups,
and

• its normaliser NG(S) contains NG(〈f〉) with index at most 2, and contains
an abelian subgroup of rank at most 2 with index at most 4. In particular
NG(S) is solvable.

This general observation will be useful in the future.

Remark 4. Under the hypotheses of Proposition 2 or of Proposition 3, the
normaliser of S contains the normaliser of 〈f〉 with index 2 if and only if the
two cyclic subgroups generated by the two rotations in S are conjugate. This
case happens if and only if NG(S) contains elements of order a power of 2 which
do not act in the same way on all elements of order p in S. Indeed, all elements
in NG(〈f〉) either commute with all elements of order p or act dihedrally. On
the other hand, any element g in NG(S) \ NG(〈f〉) conjugates f to a rotation
f ′ = gfg−1 generating a different cyclic group, so that (up to perhaps taking
a power of g) one has gf ′fg−1 = f ′f and gf ′f−1g−1 = (f ′f−1)−1, i.e. g acts
dihedrally on some elements of order p while it commutes with others.

2.3 Rotations and symmetries of knots

Definition 3. A rotation of a knot K in S3 is a rotation ψ of S3 such that
ψ(K) = K and K ∩ Fix(ψ) = ∅. We shall say that ψ is a full rotation if K/ψ
in S3 = S3/ψ is the trivial knot.

Remark 5. Let ψ and ϕ be two commuting rotations acting on some manifold
M whose orders are different from 2 and whose axes are distinct. Assume that
ψ is hyperelliptic. In this case ϕ induces a rotation φ of K = Fix(ψ)/ψ, for
Fix(ψ) ∩ Fix(ϕ) = ∅ (see Remark 3). We have that ϕ is hyperelliptic if and
only if φ is a full rotation. This can be seen by considering the quotient of M
by the action of the group generated by ψ and ϕ. This quotient is S3 and the
projection onto it factors through M/ϕ, which can be seen as a cyclic cover of
S3 branched along K/φ. By the positive solution to the Smith conjecture, M/ϕ
is S3 if and only if K/φ is the trivial knot.

The following finiteness result about commuting rotations of a non trivial
knot in S3 is one of the main ingredients in the proof of Theorem 10 (see [BoPa,
Proposition 2], and [BoPa, Theorem 2] for a stronger result where commutativity
is not required).

Proposition 4. Let K be a non-trivial knot in S3. Then there are at most two
non conjugate cyclic subgroups of Diff+(S3,K) generated by pairwise commut-
ing full rotations.

Proof.
Assume by contradiction that there are three non conjugate cyclic groups

generated by commuting full rotations of K, ϕ, ψ and ρ respectively. If two
of them -say ϕ, ψ- have the same axis, then by hypothesis they cannot have
the same order. Fix the one with smaller order -say ψ-: the quotient K/ψ is

9



the trivial knot, and ϕ induces a rotation of K/ψ which is non trivial since ϕ
commutes with ψ and its order is distinct from that of ψ. The axis A of this
induced symmetry is the image of Fix(ψ) in the quotient S3/ψ by the action
of ψ. In particular K/ψ and A form a Hopf link and K is the trivial knot: this
follows from the equivariant Dehn lemma, see [Hil].

We can thus assume that the axes are pairwise disjoint. Since the rotations
commute, even if one of them has order 2, it cannot act as a strong inversion
on the axes of the other rotations. Therefore we would have that the axis of ρ,
which is a trivial knot, admits two commuting rotations, ϕ and ψ, with distinct
axes, which is impossible: this follows, for instance, from the fact (see [EL, Thm
5.2]) that one can find a fibration of the complement of the trivial knot which
is equivariant with respect to the two symmetries.

Observe that the proof of the proposition shows that two commuting full
rotations of a non trivial knot either generate the same cyclic group or have
disjoint axes.

Remark 6. If a knot K ⊂ S3 admits a full rotation, then it is a prime knot,
see [BoPa, Lemma 2].

Let now G ⊂ Diff+(M) be a finite group of diffeomorphisms acting on
M 6= S3. Assume that G contains a hyperelliptic rotation ϕ admitting a non-
trivial power f of odd prime order p. Let K be the non trivial knot Fix(ϕ)/〈ϕ〉.
The proof of Theorems 3 and 1 will be divided into different cases according to
the structure of the normalisers of the Sylow p-subroups of G containing (non
trivial powers of) hyperelliptic rotations.

In what follows we will provide a dictionary translating between algebraic
properties of the structure of the normaliser of 〈f〉 in G and of the Sylow p-
subgroup containing it, and the existence of special symmetries of K.

We need the following definition.

Definition 4. A 2-component link is called exchangeable if there exists an
orientation-preserving diffeomorphism of S3 which exchanges the two compo-
nents of the link.

Let K be a knot and ψ a rotation of K of order n and with axis A. Consider
the 2-component link K ∪ A consisting of the images of the knot K and of the
axis A in the quotient S3/ψ of the 3-sphere by the action of ψ. Note that at
least one component of this link (i.e. A) is trivial. We call K n-self-symmetric
if K ∪ A is exchangeable. In this case ψ is a full rotation of K.

10
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Figure 1: A 5-self-symmetric knot on the left, and its exchangeable quotient
link on the right.

Since the structure of the normaliser of 〈f〉 and of its centraliser, only depend
on the symmetries of K that lift to G, we introduce the following definitions:

Definition 5. Let G be a finite group of orientation preserving diffeomorphisms
of a closed connected 3-manifoldM . Let ϕ be a hyperelliptic rotation contained
in G with quotient knot K. We say that K is strongly invertible with respect
to G if K admits a strong inversion that lifts to G. Similarly we say that K
is self-symmetric with respect to G if G contains an element ϕ′ conjugate to ϕ
such that the subgroup 〈ϕ, ϕ′〉 is abelian of rank 2, i.e. not cyclic. Remark that
in the latter case K is n-self-symmetric, where n is the order of ϕ.

Proposition 5. Let K, ϕ, f , and G be as above.

• The centraliser of 〈f〉 in G is contained with index 2 in its normaliser if
and only if K is strongly invertible with respect to G.

• The normaliser of 〈f〉 in G is contained with index 2 in the normaliser of
CG(f) in G if and only if K is self-symmetric with respect to G.

Moreover, if M is hyperbolic and G = Iso+(M), K is strongly invertible if and
only if it is strongly invertible with respect to G, and it is self-symmetric with
respect to G if and only if it is n-self-symmetric, where n is the order of the
hyperelliptic rotation ϕ.

Proof.
The necessity of the two conditions follows readily from Definition 5, so we

only need to prove their sufficiency.
Any element in the normaliser of 〈f〉 leaves Fix(f) setwise invariant and so

belongs to the normaliser of 〈ϕ〉. As a consequence any element in the normaliser
of 〈f〉 induces a symmetry of K. If the normaliser of 〈f〉 is not abelian, it must
contain Fix(f)-inversions which induce strong inversions of the knot K. This
proves the first part of the proposition.

For the second part, we have already noticed that the centraliser of f must
contain a second cyclic subgroup generated by a rotation f ′ conjugate to f .
The element g of G conjugating f to f ′ must map Fix(f) to Fix(f ′). As a
consequence, g conjugates ϕ to a hyperelliptic rotation ϕ′ such that Fix(ϕ′) =
Fix(f ′), having f ′ as non trivial power. The first part of Lemma 1 tells us that
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ϕ and ϕ′ commute so that ϕ′ induces a full n-rotation of K, where n is the order
of ϕ and ϕ′. To see that K is n-self-symmetric it suffices to remark that the
element g, which normalises 〈ϕ, ϕ′〉, induces a symmetry of the quotient link
since it exchanges Fix(ϕ) and Fix(ϕ′).

When M is hyperbolic, K is a hyperbolic knot and it has a finite group of
symmetries whose lift to M is contained in Iso+(M).

3 The finite solvable case

In this section we prove a stronger version of Theorem 3 for a finite solvable
subgroup of orientation preserving diffeomorphisms of a closed orientable 3-
manifold. This is a key result not only for the proof of Theorem 3, but also to
reduce the proof of Theorem 10 to the one of Theorem 3.

Proposition 6. Let G be a finite group acting on a 3-manifoldM and let ψi ∈ G
be n rotations of M with odd prime orders. Assume that, up to conjugacy, the
ψis are contained in a solvable subgroup of G. Then, up to conjugacy, the
rotations ψi commute.

Proof.
We can assume that G itself is solvable. Then, applying [Su2, Thm 5.6, page

104], up to conjugacy all the rotations belong to the same subgroup of maximal
odd order. In particular we may assume that G itself has odd order. Let ψ be
a rotation of prime order p and let S be a Sylow p-subgroup of G containing ψ.
Remark 3 implies that NG(S) is abelian, for the order of G is odd. In particular,
S is central in its normalizer and [Su2, Thm 2.10, page 144] implies that G is
the semidirect product of a characteristic subgroup U and S. Let ϕ be another
rotation. If ϕ has order p, then up to conjugacy, ϕ sits inside S and thus it
commutes with ψ according to Proposition 1. So let us assume that ϕ has order
a prime q 6= p. Then ϕ belongs to U . Since p is coprime to the order of U ,
ψ must normalise at least one Sylow q-subgroup T of U . Up to conjugacy, we
may assume that ϕ is contained in T . Reasoning as above, we see that ψ must
normalise at least one of the G-conjugates of 〈ϕ〉. By Remark 3, this implies
that, up to conjugacy, ψ and ϕ commute.

Corollary 6. Let G be a finite group acting on a 3-manifold M and let fi ∈ G
be n rotations of M with orders that are not powers of 2. Assume that, up
to conjugacy, the fis are contained in a solvable subgroup of G, then, up to
conjugacy, the rotations fi commute.

Proof.
For each i = 1, . . . , n let ψi be a power of fi of odd prime order. Apply

Proposition 6 to the n rotations ψi, then the first part of Lemma 1 to reach the
desired conclusion.

Theorem 4. Let G be a finite solvable group acting on a 3-manifold M which
is not homeomorphic to S3. Up to conjugacy, G contains at most three cyclic
subgroups generated by hyperelliptic rotations of orders which are not powers of
2. Moreover, either their orders are pairwise distinct or there are at most two
such rotations.
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Proof.
Assume that there are n such rotations. According to Corollary 6 we can

assume that all these n rotations commute. By Remark 5, we then have a
non trivial knot (for M 6= S3) admitting n − 1 commuting full rotations. It
follows immediately from Proposition 4 that n ≤ 3. Note that, by the positive
solution to Smith’s conjecture, a non trivial knot cannot admit two distinct
and commuting cyclic groups of symmetries of the same order. This proves the
latter part of the theorem.

4 Finite group actions

The goal of this section is to prove some useful results about hyperelliptic rota-
tions in a finite subgroup of orientation preserving diffeomorphisms of a closed
orientable 3-manifold. Again, all finite groups will be assumed to act faithfully
by orientation preserving diffeomorphisms on some closed, connected 3-manifold
M .

Definition 6. Let G ⊂ Diff+(M) be a finite group acting on a closed ori-
entable 3-manifold M . We say that an odd prime number p is hyperelliptic for
G if G contains a hyperelliptic rotation of order p.

We remark once more that, if p is hyperelliptic for G, then the 3-manifoldM
is a Z/p-homology 3-sphere. Moreover, if f is a hyperelliptic rotation of order
p its normaliser and centraliser are determined in Remark 3.

Remark 7. If G is a finite group with a normal subgroup N and f ∈ G is
an element of prime order not dividing the order of N , then, by a standard
argument in group theory (see for example [K, Theorem 1.6.2]) the centraliser
of f in G and the centraliser of fN in G/N are related by the following formula:

CG(f)/(N ∩ CG(f)) ∼= (CG(f)N)/N = CG/N (fN).

An analogous formula holds for the normaliser of the group generated by f :

NG(〈f〉)/(N ∩ NG(〈f〉)) ∼= (NG(〈f〉)N)/N = NG/N (〈fN〉).

Proposition 7. Let G ⊂ Diff+(M) be a finite group acting on a Z/p-sphereM
and let N be a normal subgroup of G. If f is a rotation of order p such that p is
coprime with the order of N , then the normaliser of a Sylow p-subgroup of G/N
contains (up to conjugacy) NG/N (〈fN〉) with index at most 2. In particular,
the normaliser of a Sylow p-subgroup of G/N contains an abelian subgroup of
rank at most 2 with index at most 4.

Proof.
Let S be a Sylow p-subgroup of G: up to conjugacy we can suppose that

S contains f . We denote by S̄ the projection of S to G/N , which is a Sylow
p-subgroup of G/N .

Since S is a normal subgroup of NG(〈f〉), by Remark 7 we obtain that S̄ is
normal in NG/N (〈fN〉), thus NG/N (S̄) ⊇ NG/N (〈fN〉).

13



The group G/N acts on the manifold M/N . Indeed, althought N may not
act freely, the space of orbits M/N is a manifold for the diffeomorphisms in
G preserve the orientation of M . Let g ∈ G be a non-trivial element of S
such that gN has order p and has non-empty fixed-point set with respect to
its action on M/N . This can be rephrased by saying that there is x ∈ M
and n ∈ N such that g(x) = n(x), so that x maps to a fixed point of gN in
M/N . We thus see that there exists g1 = gn−1 acting on M with non-empty
fixed-point set, where g1N = gN . Since g1 projects to gN , we obtain that the
order of g1 is a multiple of p. Let gk1 be a non trivial power of g1 of order p.
Note that, since ∅ 6= Fix(g1) ⊆ Fix(gk1 ), g

k
1 has non-empty fixed-point set. The

element gk1 is contained in SN , the subgroup of G generated by S and N . Since
by Proposition 1 the Sylow p-subgroup S is abelian, gk1 is conjugated by an
element of N to an element of S of order p. We can conclude that the cyclic
group generated by gN is the projection of one cyclic subgroup of S of order
p generated by elements with non-empty fixed-point set. Since S contains at
most two of these subgroups (Proposition 1), S̄ has the same property and the
thesis follows.

Remark 8. Obviously, Proposition 7 applies whenever G contains a hyperellip-
tic rotation f of odd prime order p (see Remark 2). More generally, though, its
proof is valid whenever the Sylow p-subgroup of G contains at most two cyclic
subgroups generated by elements with non-empty fixed-point sets and at least
one generated by a rotation, just as in the setting of Proposition 3, without any
condition on the homology of M .

If M is a Z/p-homology sphere we can give a different and more geometric
proof by observing that the manifold M/N on which G/N acts is again a Z/p-
homology sphere. Proposition 7 then follows from Remark 7 and Proposition 1.

To see that M/N is a Z/p-homology sphere, consider the following exact
sequence

1 −→ π1(M) −→ πor
1 (M/N) −→ N −→ 1

where πor
1 (M/N) denotes the orbifold fundamental group of the orbifold struc-

ture of M/N . The above exact sequence gives:

1 −→ H1(M) −→ πor
1 (M/N)/π1(M)′ −→ N −→ 1

for the group π1(M)′ is characteristic and contained in πor
1 (M/N)′. Since both

H1(M) and N are finite and of order prime with p so are πor
1 (M/N)/π1(M)′ and

its quotient, the abelianisation of πor
1 (M/N). We now observe that πor

1 (M/N)
must surject onto π1(M/N), the fundamental group of the manifold M/N , so
that the abelianisation of πor

1 (M/N) must surject on the homology of M/N ,
proving the assertion.

This argument shows something more precise that what claimed in the state-
ment of Proposition 7, namely that the Sylow p-subgroup of G/N , which is
isomorphic to S, acts on M/N precisely as S acts on M .

Recall that a finite group Q is quasisimple if it is perfect (the abelianised
group is trivial) and the factor group Q/Z of Q by its centre Z is a nonabelian
simple group (see [Su2, chapter 6.6]). A group E is semisimple if it is perfect
and the factor group E/Z(E) is a direct product of nonabelian simple groups.
A semisimple group E is a central product of quasisimple groups which are
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uniquely determined. Any finite group G has a unique maximal semisimple
normal subgroup E(G) (maybe trivial), which is characteristic in G. The sub-
group E(G) is called the layer of G and the quasisimple factors of E(G) are
called the components of G.

The maximal normal nilpotent subgroup of a finite group G is called the Fit-
ting subgroup and is usually denoted by F (G). The Fitting subgroup commutes
elementwise with the layer of G. The normal subgroup generated by E(G) and
by F (G) is called the generalised Fitting subgroup and is usually denoted by
F ∗(G). The generalised Fitting subgroup has the important property to con-
tain its centraliser in G, which thus coincides with the centre of F ∗(G). For
further properties of the generalised Fitting subgroup see [Su2, Section 6.6.].

Let G ⊂ Diff+(M) be a finite group acting on a 3-manifold M . In the
following it will be convenient to consider O′, the maximal normal solvable
subgroup of odd order coprime with any hyperelliptic prime for G and O′

2, the
maximal normal solvable subgroup of order coprime with any hyperelliptic prime
for G, not necessarily odd (for the existence of O′ and O′

2 see [Su2, page 29]).

Proposition 8. Let G ⊂ Diff+(M) be a finite group acting on a 3-manifold
M not homeomorphic to S3. Let O′ and O′

2 be defined as above. Let F (G/O′)
(respectively F (G/O′

2)) be the Fitting subgroup of G/O′ (respectively G/O′
2) and

let E(G/O′) (respectively E(G/O′
2)) be the layer of G/O′ (respectively G/O′

2).
Assume that one of the following conditions is satisfied:

• The maximal normal subgroup of odd order of the Fitting subgroup F (G/O′)
(respectively F (G/O′

2)) is not cyclic;

• The Fitting subgroup F (G/O′) (respectively F (G/O′
2)) is cyclic and the

layer E(G/O′) (respectively E(G/O′
2)) is trivial;

then G is solvable.

Proof.
By the maximality of O′ we obtain that the odd primes dividing the order of

F (G/O′) are hyperelliptic. If the maximal subgroup of F (G/O′) of odd order
is not cyclic, then there is at least one hyperelliptic odd prime p such that the
Sylow p-subgroup of F (G/O′) is abelian of rank 2, according to Remark 7 and
Proposition 1. Since F (G/O′) is nilpotent, its Sylow subgroups are characteris-
tic. As a consequence, G/O′ normalises the elementary abelian p-group of rank
2 contained in F (G/O′). Such elementary abelian p-group contains a projection
of a hyperelliptic rotation: by Proposition 7 we obtain that G/O′, and hence
G, are solvable groups. The proof of the situation where F (G/O′

2) is not cyclic
follows the same lines.

If E(G/O′) is trivial, then the generalised Fitting subgroup ofG/O′ coincides
with F (G/O′). In this case we also have that the Fitting subgroup coincides
with its centraliser in G/O′. Since the automorphism group of a cyclic group is
abelian, so is (G/O′)/F ∗(G/O′) which injects into Aut(F ∗(G/O′)). We deduce
once more that G is solvable. The very same argument gives the proof in the
case where G/O′ is replaced with G/O′

2.

Remark 9. The proof of the following proposition will rely on the full classifica-
tion of finite simple groups and, more specifically, on the fact that the structure
of their automorphism groups is known.
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Proposition 9. Let G ⊂ Diff+(M) be a finite group acting on a closed ori-
entable 3-manifold M . Let N be a normal subgroup of G and let f ∈ G be
a rotation of odd prime order p, coprime with |N |. If E(G/N) 6= 1, then the
projections to G/N of the rotations of order p in G are contained in the group
generated by E(G/N) and by its centraliser in G/N , and every component of
G/N has order divisible by p. Moreover, if F (G/N) is cyclic, then the centraliser
of E(G/N) in G/N is solvable.

Proof.
Note that by Remark 3 and by Remark 7 the centraliser of fN in G/N is

abelian.

First we prove that each component of G/N is normalised by fN . Let E1 be
a component of G/N and suppose by contradiction that E1 is not normalised
by fN . We denote by f̄ the coset fN and by n+ 1 = p the minimum positive
integer such that f̄n+1E1f̄

−(n+1) = E1. We define the following subgroup:

Ec = {x̄f̄ x̄f̄−1 . . . f̄nx̄f̄−n | x̄ ∈ E1}.

Since elements of G/N contained in different components commute, it is
possible to prove that Ec is a subgroup of G/N isomorphic to a quotient of E1

by a central subgroup, i.e. Ec is a quasisimple group. Moreover, each element
of Ec commutes with f̄ and this is a contradiction to the fact that f̄ has abelian
centraliser in G/N . Hence fN normalises E1. Moreover, for the very same
reason, the action by conjugation of f̄ on E1 is not trivial. We remark that
the automorphism group of E1 injects in the automorphism group of its simple
quotient (see [GLS3, Corollary 5.1.4])

Assume that the simple quotient of E1 is either sporadic or alternating.
Since the order of the outer automorphism group of any such simple group is a
(possibly trivial) power of 2 (see [GLS3, Section 5.2 and 5.3]), we conclude that
f̄ must induce an inner automorphism of E1. In particular p divides the order
of E1.

We can thus assume that E1 is a central extension of a simple group of Lie
type.

Recall that, by [GLS3, Theorem 2.5.12], Aut(E1) injects to the semidirect
product of a normal subgroup Inndiag(E1), containing the subgroup Inn(E1)
of inner automorphisms, and a group ΦΓ, where, roughly speaking, Φ is the
group of automorphisms of E1 induced by the automorphisms of the defining
field and Γ is the group of automorphisms of E1 induced by the symmetries of
the Dinking diagram associated to E1 (see [GLS3] for the exact definition). By
[GLS3, Theorem 2.5.12.(c)], every prime divisor of |Inndiag(E1)| divides |E1|.
Thus we can assume that the automorphism induced by f̄ on E1 is not contained
in Inndiag(E1) and its projection θ on Aut(E1)/Inndiag(E1) ∼= ΦΓ has order
p. We will find a contradiction showing that in this case the centraliser of f̄ in
E1 is not abelian.

Write θ = φγ, with φ ∈ Φ and γ ∈ Γ. If φ = 1, then γ is nontrivial and
f̄ induces a graph automorphism according to [GLS3, Definition 2.5.13]. Since
p is odd, the only possibility is that E1 is a central perfect extension of D4(q)
and p = 3 (see [GLS3, Theorem 2.5.12 (e)]). The centraliser of f̄ in E1 is
nonabelian by [GLS3, Table 4.7.3 and Proposition 4.9.2.]. If φ 6= 1 and E1 is
not isomorphic to the group 3D4(q), then the structure of the centraliser of f̄
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in E1 is described by [GLS3, Theorem 4.9.1], and it is nonabelian. Finally, if
φ 6= 1 and E1

∼= 3D4(q), the structure of the non abelian centraliser of f̄ in
E1 follows from [GLS3, Proposition 4.2.4]. We proved that the automorphism
induced by f̄ is contained in Inndiag(E1) and p divides |E1|.

Let us now assume by contradiction that the projection to G/N of a rotation
of order p in G is not contained in the group generated by E(G/N) and its
centraliser in G/N . Denote by g such rotation, by S the Sylow p-subgroup of
G/N containing ḡ = gN and by C the centraliser of E(G/N) in G/N . Note
that C ⊃ F (G/N). We recall that, by Proposition 1, S is abelian of rank at
most 2.

Since p divides the order of every component of G/N and S has rank at
most 2, we get that E(G/N) has only one component, E1, with cyclic Sylow p-
subgroup. Moreover, by the first part of the proof, the automorphism induced by
ḡ on E1 is inner-diagonal. If it is inner, we obtain ḡ as a product of an element
that centralises E1 and an element in E1; otherwise, we get a contradiction,
since, by [GLS3, Theorem 2.5.12] and [A, (33.14)], a group of Lie type with
cyclic Sylow p-subgroup cannot have a diagonal automorphism of order p.

Since the centraliser of the generalised Fitting subgroup coincides with its
centre Z(F ∗(G/N)) and since C acts trivially on E(G/N) by definition, the quo-
tient C/Z(F ∗(G/N)) merges injectively in the automorphism group of F (G/N).
If the Fitting subgroup is cyclic, then its automorphism group is abelian and C
is solvable.

5 Branched coverings of non self-symmetric knots

In this section we prove Theorem 3 under the assumption that the finite group
G of orientation preserving diffeomorphisms of the closed orientable 3-manifold
M contains a hyperelliptic rotation whose order n is not a power of 2 and which
corresponds to a cyclic cover of S3 branched along a non-self symmetric knot
K.

The main result of this section is the following:

Theorem 5. Let M 6= S3 be the n-fold cyclic covering of S3 branched along
a knot K ⊂ S3 such that n is not a power of 2. Let G be a finite subgroup of
Diff+(M) which contains the group of deck transformations of the n-fold cyclic
branched covering of K. Assume that K is not self-symmetric with respect to
G. Then G contains at most six conjugacy classes of cyclic groups generated by
a hyperelliptic rotation of odd prime order.

Remark 10. According to Definition 5 and Proposition 5, the hypothesis that
K is not self-symmetric with respect to G is equivalent to the following algebraic
condition: for each odd prime p dividing n the normaliser of a Sylow p-subgroup
of G coincides with the normaliser of a rotation of order p (see also Lemma 1).
It is in fact this equivalent condition that is used in the proofs of Theorem 7 in
[Mec2] and of Theorem 5.

The following two theorems, proved in [Mec2], are key results for the proof of
Theorem 5. Let us remark that their proofs only rely on the Gorenstein-Harada
theorem [G, page 6] and not on the whole classification of simple groups.
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Theorem 6. [Mec2, Theorem 2] Let G be a finite group of orientation-preserving
diffeomorphisms of a closed orientable 3-manifold. Let O be its maximal normal
subgroup of odd order and E(G/O) be the layer of G/O. If G contains a rotation
of order 2, h, such that the coset hO is contained in E(G/O), then G/O has a
normal subgroup D isomorphic to one of the following groups:

PSL2(q), PSL2(q)× Z/2 or SL2(q)×Z/2 SL2(q
′)

where q and q′ are odd prime powers greater than 4. The factor group (G/O)/D
contains, with index at most 2, an abelian subgroup of rank at most 4.

Let M be the n-fold and m-fold cyclic branched cover of two knots K and
K ′, respectively. We denote by H and H ′ the corresponding cyclic groups of
deck transformations for K and K ′, respectively. We shall say that the knots
K and K ′ arise from the standard abelian construction if the groups H and
H ′ commute up to conjugacy. This happens if and only if K (respectively K ′)
admits a full rotation h′ induced by the generator of H ′ (respectively h induced
by the generator of H) of order m (respectively n) (see also Remark 5) and such
that (K ∪ Fix(h′))/〈h′〉 = (K ′ ∪ Fix(h))/〈h〉.

The following result is stated in [Mec2] under the extra hypothesis that M
is hyperbolic. Hyperbolicity of the manifold M is only used in the proof to
ensure that the covering transformations for K and K ′ sit inside a finite group
of diffeomorphisms and that K and K ′ are not trivial. The conditions given
here replace thus the hyperbolicity requirement.

Theorem 7. [Mec2, Theorem 3] Let M be a 3-manifold not homeomorphic to
S3. Suppose thatM is the n-fold and m-fold cyclic covering of S3 branched along
two distinct knots K and K ′, respectively, such that m and n are not powers of
2. Let G be a finite subgroup of Diff+(M) which contains the corresponding
cyclic groups of deck transformations for K and K ′, respectively. If the knot K
is not self-symmetric with respect to G, then one of the following cases occurs:

1. K and K ′ arise from the standard abelian construction;

2. If O ⊂ G is the maximal normal subgroup of odd order, G contains a
rotation h of order 2 such that hO is contained in the layer of G/O (in
particular Theorem 6 applies to G);

3. All prime divisors of n and m are contained in {2, 3, 5, 7} and there exists
a normal subgroup N of G such that N is solvable and G/N is isomorphic
to a subgroup of GL4(2).

To prove Theorem 5 the strategy is to “cover” the group G with solvable
groups. With this in mind, we introduce the notion of solvable normal π-cover.

Definition 7. Let G be a finite group. Let π be a set of primes dividing |G|.
We will call a collection C of subgroups of G a solvable normal π-cover of G if
every element of G of prime order p belonging to π is contained in an element
of C and for every g ∈ G, H ∈ C we have that Hg ∈ C. We denote by γsπ(G) the
smallest number of conjugacy classes of subgroups in a solvable normal π-cover
of G. Note that, since Sylow subgroups are clearly solvable, γsπ(G) ≤ |π|.
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Notice that our definition of solvable normal π-cover differs from the more
usual definition of normal cover for non-cyclic finite groups in that we only
need to cover elements of prime order and not elements of arbitrary order. Also
the subgroups of a solvable normal π-cover must be solvable but need not be
proper.

The following remark better explains the reason why we are interested in
“covering” G with solvable groups.

Remark 11. If G is a finite group of orientation-preserving diffeomorphisms
of a closed orientable 3-manifold M and π is the set of hyperelliptic primes for
G, then, by Theorem 4, the number 3γsπ(G) bounds from above the number of
non conjugate cyclic groups generated by a hyperelliptic rotation of odd prime
order.

This algebraic lemma, whose proof is straightforward, will be useful.

Lemma 4. Let G be a finite group, and let π be a set of primes dividing the
order of G.

• If N is a solvable normal subgroup of G, then γsπ(G) ≤ γsπ(G/N).

• If π′ is a subset of π, then γsπ′(G) ≤ γsπ(G).

We are now ready to prove Theorem 5.

Proof of Theorem 5.
Let f be a hyperelliptic rotation ofM generating the group of deck transfor-

mations of the n-fold cyclic branched covering of K. We can apply Theorem 7
to deduce that either all the other hyperelliptic rotations commute with f , up
to conjugacy, or one of situations 2. or 3. occurs.

If all hyperelliptic rotations commute with f , it follows from Proposition 4
that their number, including f , is at most three.

If we are in situation 3, the factor G/N has, up to conjugacy, at most three
Sylow subgroups of odd order. Choosing a Sylow subgroup of G/N for each
prime in {3, 5, 7}, the preimages of these subgroups in G are three solvable
subgroups containing N such that their conjugates give a solvable normal π-
cover, where π is the set of odd primes dividing the order of G. Therefore, if
a hyperelliptic rotation is contained in N all the other rotations of odd order
commute with it and we are done.

Otherwise, the hyperelliptic primes are contained in the set {3, 5, 7}. By
Lemma 2 and Proposition 1, there are in G at most six non conjugate cyclic
groups generated by a hyperelliptic rotation of odd prime order.

Finally we assume that condition 2 of Theorem 7 holds and G is one of the
groups described in Theorem 6.

As in Section 4 and Proposition 8 we will consider O′, the maximal normal
solvable subgroup of G whose order is odd and coprime with any hyperelliptic
prime. If p is a hyperelliptic prime, since |O′| and p are coprime, the projections
of the rotations of order p to G/O′ have abelian centraliser (see Remark 7). We
have O′ ⊆ O, the maximal normal subgroup of odd order, so the layer of G/O′,
which may be trivial, projects to a normal semisimple subgroup of G/O with the
same number of quasisimple factors as the layer of G/O′. Hence, any component
of G/O′ is a central perfect extension of PSL2(q); moreover in G/O′ we have
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at most two components. Remark that, although the layer E(G/O) cannot be
trivial for it contains hO, the layer E(G/O′) might be trivial a priori.

Let us now consider the Fitting subgroup F (G/O′) of G/O′. By Proposi-
tion 8, we can assume that the maximal normal subgroup of F (G/O′) of odd
order is cyclic. We will now prove that F (G/O′) itself is cyclic. Since F (G/O′)
is nilpotent, this boils down to showing that the Sylow 2-subgroup of F (G/O′)
is cyclic (or possibly trivial). The Sylow 2-subgroup of F (G/O′) projects injec-
tively to a subgroup of the Fitting subgroup of G/O; in the final step of the
proof of Theorem 6 it is proved that F (G/O) is cyclic, which is enough to reach
the desired conclusion. We provide here the proof of this fact for completeness.

We remark that, by the maximality of O, F (G/O) is a 2-group and the layer
of G/O contains hO where h is a rotation of order 2. The centraliser of h is
described in Remark 3 and by Remark 7 we can deduce that the structure of
the centraliser of hO in G/O is analogous. If the layer of G/O is isomorphic to
PSL2(q), the Sylow 2-subgroup of E(G/O) is dihedral and hO is centralised by
an elementary abelian 2-subgroup of rank 2, this implies that F (G/O) has order
2. If the layer of G/O is SL2(q) ×Z/2 SL2(q

′), the quotient of E(G/O) by its
centre contains an elementary abelian 2-subgroup of rank 4 that is centralised
by F (G/O)/Z(E(G/O)). Since each 2-subgroup of G is generated by at most
four elements (see [RZ, Lemma 2.2.]), then F (G/O) coincides with the centre
of the layer.

Since F (G/O) is a cyclic group of order a (possibly trivial) power of 2,
F (G/O′) is cyclic. By Proposition 8 we can assume that the layer E(G/O′) is
not trivial.

By Proposition 9 we can suppose that G/O′ coincides with the group gen-
erated by E(G/O′) and by a normal solvable subgroup (the centraliser of the
layer). By Lemma 4 and Remark 11, we obtain that the number of conjugacy
classes of subgroups of G generated by some hyperelliptic rotation of odd prime
order is bounded by 3γsπ(E(G/O′)), where π is the set of odd primes dividing
the order of E(G/O′).

We recall that the number γsπ(PSL2(q)) is two. In fact the upper triangular
matrices form a solvable subgroup of SL2(q) of order (q− 1)q, moreover SL2(q)
contains a cyclic subgroup of order q + 1 (see [H]). The conjugates of the
projections of these two subgroups to PSL2(q) give a solvable normal π-cover.
If G/O′ has one component, then we obtain that six is an upper bound for the
number of conjugacy classes of cyclic subgroups of G generated by hyperelliptic
rotations. If G/O′ has two components, the same argument implies readily that
twelve is an upper bound but in this case, with a small modification of our
reasoning, we are able to get that there are at most four hyperellitpic primes.

Suppose that the components of G/O′ are two; the layer of G/O′ projects
surjectively to the layer of G/O. A central perfect extension of PSL2(q) that is
not simple has a center of order 2, with the only exception of PSL(2, 9) ∼= A6. In
this case the centre might contain some element of order 3 but, if a component
of G/O′ is a central perfect extension of PSL(2, 9) with centre containing an
element of order 3, then the Sylow 3-subgroup is not abelian (see [A, 33.15]),
and hence 3 cannot be hyperelliptic; this contradicts the maximality of O′.

We thus obtain that the layer of G/O′ is SL2(q) ×Z/2 SL2(q
′) (we remark

that q and q′ might be equal). By Proposition 9 a hyperelliptic prime number
p divides the order of both components, this implies that the Sylow p-subgroup
of E(G/O′) is abelian of rank 2, and all the projections of the rotations of order
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p to G/O′ are contained in the layer of G/O′. We denote by Uq the subgroup
of the upper triangular matrices of SL2(q) and by Cq a cyclic subgroup of
order q + 1 of SL2(q). We consider the following set of solvable subgroups of
SL2(q) ×Z/2 SL2(q

′):

∆ = {Uq ×Z/2 Uq′ , Cq ×Z/2 Uq′ , Uq ×Z/2 Cq′ , Vq ×Z/2 Uq′}.

This set has the property that each Sylow p-subgroup in G/O′ with p odd is
contained in a conjugate of one of the subgroups in ∆. We consider the preim-
ages of the subgroups in ∆ with respect to the projection G −→ G/O′. We
obtain a set ∆̃ containing four solvable subgroups of G with the same property
(i.e. each Sylow p-subgroup of G with p odd is contained in a conjugate of one
of the subgroups in ∆̃). In this situation, if p is a hyperelliptic prime, its Sylow
p-subgroup has rank 2. By Theorem 4, if one subgroup of ∆̃ contains the Sylow
p-subgroup of a hyperelliptic prime, then it cannot contain any other hyperel-
liptic rotation of odd prime order. Therefore we have at most four hyperelliptic
primes. For each of them we have at most two non conjugate cyclic subgroups
generated by a hyperelliptic rotation according to Lemma 2. We will prove that
in every case we have only one conjugacy class. In general this would imply that
four is an upper bound (we use this fact later in the proof of Lemma 5) but, un-
der the assumption of this theorem that at least one knot is non self-symmetric,
this fact implies also that this case does not occur.

If p is a hyperelliptic prime and p 6= s (where q = sn), the component
SL2(q) contains an involution acting dihedrally on the Sylow p-subgroup by
conjugation. This involution commutes with the other component of E(G/O′),
and in particular with the Sylow p-subgroup of SL2(q

′). By Remark 4, we
obtain that the two cyclic groups of order p generated by elements with non-
empty fixed-point set and contained in a Sylow p-subgroup are conjugate. Let
S be a Sylow p-subgroup of G; we denote by f and f ′ two rotations of order
p that are contained in S and generate different groups. Their projections to
G/O′ generate also different cylic groups. Replacing f with one of its powers, we
can suppose that the projections of f and f ′ to G/O′ are conjugate. Thus there
exist n ∈ O′ and g ∈ G such that gfg−1 = f ′n. The subgroup generated by S
and O′ contains f ′n, then, by the Sylow theorems there exist s ∈ S and m ∈ O′

such that msgfg−1s−1m−1 = msf ′ns−1m−1 is contained in S. We remark that
msgfg−1s−1m−1 has non-empty fixed-point set, so it is contained either in the
group generated by f ′ or in the group generated by f . In the first case we obtain
that the two cyclic groups of order p generated by rotations in S are conjugate.
The second case cannot occur because, if msgfg−1s−1m−1 = fk in the quotient
G/O′ we would have that fkO′ = msgfg−1s−1m−1O′ = sgfg−1s−1O′ and
fkO′ = gfg−1O′ = f ′O′ which is impossible. We have only one conjugacy class
of subgroups generated by a hyperelliptic rotation of order p.

It remains the case when p = s; since the Sylow p-subgroup has to be cyclic,
in this case n = 1. Since p > 3 we have again elements in SL2(q) that normalise
the Sylow p-subgroup but do not centralise it, and hence we have in G/O′

one conjugacy class of cyclic groups of order p generated by rotations and the
conclusion follows as in the previous case.

Remark 12. The proof of Theorem 5 shows that if one of the knots is non
self-symmetric with respect to G and we have more than three classes of cyclic
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groups generated by hyperelliptic rotations of odd prime order, then either we
are in Case 3 of Theorem 7 and any hyperelliptic prime is contained in {3, 5, 7}
or the layer of G/O is PSL2(q).

Taking into account the list of all finite non solvable groups that can possibly
act on Z/2-homology 3-spheres obtained in [MZ, Theorem 1, page 677], the proof
of Theorem 5 and its generalisation to arbitrary orders that are not powers of 2
(see Section 7) show readily the result below. We stress that the proof of [MZ,
Theorem 1, page 677] is based on the Gorenstein-Harada theorem only.

Corollary 7. Let M 6= S3 be a Z/2-homology sphere. Then G contains at most
six conjugacy classes of cyclic groups generated by a hyperelliptic rotation of
order different from a power of 2.

6 Proof of Theorem 3

In this section we complete the proof of Theorem 3.

Theorem 3. Let G be a finite group of orientation preserving diffeomorphisms
of a closed orientable 3-manifoldM not homeomorphic to S3, then G contains at
most six conjugacy classes of cyclic subgroups generated by hyperelliptic rotations
of odd prime order.

This general upper bound is given by Theorem 5 of the previous section and
by the analysis of the structure of a finite group acting on a closed orientable
manifold and containing several hyperelliptic rotations corresponding to deck
transformations of cyclic branched coverings along self-symmetric knots.

Lemma 5. Let G be a finite group acting by orientation preserving diffeomor-
phisms on a closed orientable 3-manifold M 6= S3. Either Theorem 3 holds for
G, or there exists G0 a subgroup of G such that for any hyperelliptic prime p
the following properties hold:

1. G0 contains all rotations of order p up to conjugacy;

2. Sp, a Sylow p-subgroup of G0, has rank two;

3. if f is a rotation of order p the normaliser NG0
(〈f〉) is abelian of rank

two;

4. NG0
(〈f〉) is a subgroup of index two of NG0

(Sp).

Proof.
We suppose the existence of at least one hyperelliptic prime, otherwise the

theorem is automatically verified.
If for some hyperelliptic prime p and for some hyperelliptic rotation f of

order p we have that NG(〈f〉) = NG(Sp), then we can apply Theorem 5 (see
Remark 10) and thus Theorem 3 holds for G.

So we can suppose that for any hyperelliptic prime NG(〈f〉) has index 2 in
NG(Sp), thus Sp is of rank 2 and it contains exactly two groups of odd prime
order generated by hyperelliptic rotations.

Now suppose that NG(〈f〉) is not abelian, hence it contains some Fix(f)-
inversion of order 2. Let h be such an involution, it projects to a strong inversion
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of the knot given by the projection of Fix(f) in M/〈f〉 ∼= S3. The projection of
h is a rotation and its axis meets the projection of Fix(f) in two points. This
implies that h is a rotation, too. In [Mec2, Theorem 1] the structure of a finite
group acting on a 3-manifold and containing a rotation of order 2 was studied:

Theorem 8. [Mec2] Let G be a finite group of orientation-preserving diffeo-
morphisms of a closed orientable 3-manifold. Let O be the maximal normal
subgroup of odd order and E(G̃) be the layer of G̃ = G/O. Suppose that G
contains an involution which is a rotation.

1. If the semisimple group E(G̃) is not trivial, it has at most two components
and the factor group of G̃/E(G̃) is solvable. Moreover, the factor group of
E(G̃) by its centre is either a simple group of sectional 2-rank at most 4
or the direct product of two simple groups of sectional 2-rank at most 2.

2. If E(G̃) is trivial, there exists a normal subgroup H of G such that H
is solvable and G/H is isomorphic to a subgroup of GL4(2), the general
linear group of 4× 4 matrices over the finite field with 2 elements.

If E(G̃) is trivial we obtain at most six non conjugate groups of hyperelliptic
rotations of odd prime orders (see the proof of Theorem 5, situation 3)

If the projection to G̃ of a rotation of order 2 is contained in E(G̃), then
Theorem 6 applies. Once again the proof of Theorem 5 implies that six is an
upper bound.

We can therefore suppose that E(G̃) is not trivial and the projection of
any rotation of order 2 is not contained in E(G̃). The quotient G̃/E(G̃) is
solvable, by Hall’s Theorem we have a subgroup G̃0 (maybe trivial) of G̃/E(G̃)
such that the order of G̃0 is divided only by hyperelliptic primes and the index
of G̃0 in G̃/E(G̃) is coprime with each hyperelliptic prime. We denote by G0

the preimage of G̃0 in G under the projection G −→ G̃ −→ G̃/E(G̃): the
subgroup G0 contains all the Sylow subgroups corresponding to hyperelliptic
primes and does not contain any rotation of order 2. This implies that in G0

a hyperelliptic rotation does not admit inversions and the normaliser of the
subgroup it generates is abelian. The subgroup G0 satisfies our requests, except
possibly the fourth, but the case when NG0

(〈f〉) = NG0
(Sp) was analysed at

the beginning of the proof giving that Theorem 3 holds for G0 and hence for G,
since G0 contains all the hyperelliptic rotations of G.

Proof of Theorem 3. The proof follows from Proposition 10 below since
either Theorem 3 holds for G or Lemma 5 allows to replace G by a subgroup
G0, which satisfies the hypotheses of Proposition 10.

The rest of the section is devoted to the proof of Proposition 10.

Proposition 10. Let G be a finite group acting by diffeomorphisms on a closed
orientable 3-manifold M not homeomorphic to S3. If for any hyperelliptic prime
p of G the following properties hold:

1. Sp, a Sylow p-subgroup of G, is abelian of rank 2;

2. if f is a rotation of order p the normaliser NG(〈f〉) is abelian of rank 2;

3. NG(〈f〉) is a subgroup of index 2 of NG(Sp)
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then we have in G at most four non conjugate cyclic subgroups generated by
hyperelliptic rotations of odd prime orders.

Proof.
If p is a hyperelliptic prime, then Sp has rank 2 and contains exactly two

subgroups of order p generated by a rotation. We denote by Fp and F ′
p, these

subgroups. The quotient of M by each of them is homeomorphic to S3 because
they are conjugate. We have that NG(Fp) = NG(F

′
p) is abelian of rank two and

each element in the complement NG(Sp)\NG(Fp) exchanges by conjugation the
subgroups Fp and F ′

p.
Let O′

2 be the maximal normal solvable subgroup of G of order coprime with
every hyperelliptic prime (note that the order of O′

2 is not necessarily odd). We
denote by Ḡ the factor group of G by O′

2. If x is an element of G we denote
by x̄ the projection of x to Ḡ, analogously if H is a subgroup of G, H̄ is the
projection of H to Ḡ.

Claim 1. The Sylow p-subgroup S̄p of Ḡ is abelian of rank 2. Its normaliser
N̄ = NḠ(S̄p) contains NḠ(F̄p) with index at most 2; NḠ(F̄p) is abelian of rank
2 and contains F̄p and F̄ ′

p. The groups F̄p and F̄ ′
p are the only two cyclic groups

of order p in N̄ acting with non-empty fixed-point sets on the manifold M/O′
2.

Moreover, either we have at most three non conjugate groups of rotations of odd
prime order in G or NḠ(F̄p) has index exactly 2 in N̄ and the elements of N̄
not in NḠ(F̄p) exchange F̄p and F̄ ′

p.

Proof.
The first part of the claim is implied by Proposition 7 and its proof; it

remains to prove the last statement. If NḠ(F̄p) = NḠ(S̄p), then we can apply
[Su2, Theorem 2.10.] and obtain a normal p-complement H̄ . The preimage of
H̄ , with respect to the projection of G onto Ḡ, is a normal p-complement of G.
The argument used in the proof of Proposition 6 shows that in this case rotations
of odd prime orders commute up to conjugacy. Thus, the proof of Proposition 4
shows that in this case we have at most three non conjugate cyclic subgroups
generated by a hyperelliptic rotation of odd prime order.

From now on we suppose that NḠ(F̄p) has index exactly 2 in N̄ .

Claim 2. Let F (Ḡ) be the Fitting subgroup of Ḡ and let E(Ḡ) be the layer of
Ḡ. Either we have at most three non conjugate cyclic subgroups generated by
a hyperelliptic rotation of odd prime order or F (Ḡ) is cyclic and E(Ḡ) is not
trivial.

Proof.
The claim is just Proposition 8.

From now on we suppose that F (Ḡ) is cyclic and E(Ḡ) is not trivial.

Claim 3. (F̄p × F̄ ′
p) ∩ Z(N̄) 6= 1.

Proof.
Since the elements of N̄ \ NḠ(F̄p) exchange F̄p and F̄ ′

p, they centralise a

subgroup of order p of S̄p (see Remark 4) and that subgroup is contained in
Z(N̄) since NḠ(F̄p) is abelian. Since every element of order p in S̄p is contained
in (F̄p × F̄ ′

p), we get the assertion.
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Claim 4. If a prime p is hyperelliptic, then the Sylow p-subgroup of E(Ḡ) is
cyclic and non-trivial. Moreover E(Ḡ) is a simple group.

Proof.
By [Su2, Exercise 1, page 161], S̄p is the direct product of S̄p ∩ Z(N̄) and

Ḡ′ ∩ S̄p, where Ḡ
′ is the commutator subgroup of Ḡ. Since S̄p is abelian of

rank 2 and its maximal elementary abelian subgroup is F̄p × F̄ ′
p, it follows

that F̄p × F̄ ′
p is the direct product of (F̄p × F̄ ′

p) ∩ Z(N̄) and (F̄p × F̄ ′
p) ∩ Ḡ′.

By Claim 3, (F̄p × F̄ ′
p) ∩ Z(N̄) 6= 1. On the other hand, by Proposition 9,

1 6= E(Ḡ) ∩ (F̄p × F̄ ′
p) ⊆ (F̄p × F̄ ′

p) ∩ Ḡ′, since E(Ḡ) is perfect. Thus, both

(F̄p × F̄ ′
p) ∩ Z(N̄) and (F̄p × F̄ ′

p) ∩ Ḡ
′ are cyclic groups of order p.

If q is a prime dividing the order of the centre of a component of Ḡ, according
to [A, (33.14)], the Sylow q-subgroup of the component cannot be cyclic, so that
q is not hyperelliptic. The maximality of O′

2 ensures that the centre of E(Ḡ) is
trivial.

It follows that E(Ḡ) is a simple group with cyclic Sylow p-subgroups. If we
had two components in Ḡ, then p should divide the order of both by Proposi-
tion 9 and we would obtain a noncyclic p-subgroup in E(Ḡ); this is impossible
and we have one component.

Claim 5. If p is hyperelliptic, then the centraliser in E(Ḡ) of the Sylow p-
subgroup of E(Ḡ) is abelian and the normaliser in E(Ḡ) of the Sylow p-subgroup
of E(Ḡ) contains an abelian subgroup of index 2.

Proof. Let f be a hyperelliptic rotation of order p. By Proposition 9 we
have that f̄ is contained in the subgroup generated by the the layer and its
centraliser.

We obtain that f̄ is the product of an element of order p in E(Ḡ) with an
element of order p that centralises E(Ḡ). Since the centraliser of f̄ is abelian,
the centraliser in E(Ḡ) of any Sylow p-subgroup of E(Ḡ) is abelian, too. Indeed,
any element x ∈ E(Ḡ) commutes with any element in the centraliser of E(Ḡ).
As a consequence, if x commutes with an element of order p in E(Ḡ) it commutes
with the whole elementary abelian group F̄p× F̄ ′

p, and in particular x commutes

with f̄ . Let S̄p be a Sylow p-subgroup of Ḡ. If an element of E(Ḡ) normalises
the Sylow p-subgroup of E(Ḡ) contained in S̄p, then it normalises also the
subgroup generated by the elements of order p in S̄p. The group S̄p contains
precisely two cyclic subgroups of order p generated by a rotation (F̄p and F̄ ′

p).

Therefore the normaliser of a Sylow p-subgroup of E(Ḡ) contains with index
2 an abelian subgroup (the normaliser cannot be abelian otherwise we have a
p-complement).

The proof of the following claim will exploit the classification of finite simple
groups.

Claim 6. The group G contains at most four non conjugate cyclic subgroups
generated by hyperelliptic rotations of odd prime order.

Proof.
If E(Ḡ) is sporadic, the primes dividing the order of the group do not satisfy

the condition on the normaliser given by Claim 5 (see [GLS3, Section 5.3.]).
Suppose now E(Ḡ) ∼= An. If the Sylow p-subgroup is cyclic, then p > n/2

and so the Sylow p-subgroup is generated by a p-cycle. Since by Claim 5 the
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centraliser is abelian, we have that p > n − 4. Thus we have at most two
hyperelliptic odd primes and for each prime we have only one conjugacy class
of cyclic groups of order p generated by a hyperelliptic rotation.

The only remaining case is that of simple groups of Lie type.
We note that each solvable subgroup of G contains at most one conjugacy

class of cyclic groups generated by a hyperelliptic rotation of odd prime order.
In fact, if g were a rotation of odd prime order q commuting with a rotation
f of order p, then g should be a Fix(f)-rotation and centralise a Sylow p-
subgroup Sp. We should obtain that Sp is a group of Fix(g)-rotations. Since
Fix(g) is a simple closed curve, the action of Sp on Fix(g) cannot be faithful
and Fix(g) should coincide either with the fixed point of F or with that of F ′.
This is impossible by part 2 of Lemma 1. Therefore, we have that the number of
conjugacy classes of subgroups generated by hyperelliptic rotations of odd prime
order in G is bounded by γsπ(G) where π is the set of hyperelliptic primes. Since
the Fitting subgroup of Ḡ is cyclic, by Proposition 9 and Lemma 4 we have that
γsπ(G) ≤ γsπ(E(Ḡ)). The following Lemma concludes the proof:

Lemma 6. Let K be a finite quasisimple group of Lie type. If π is the set of
odd primes p such that K has cyclic Sylow p-subgroups and CK(g) is abelian for
every element g ∈ K of order p, then γsπ(K) ≤ 4.

Proof.
Let K ∼= Σn(q) or K ∼= dΣn(q), where q is a power of a prime s. Here we

use the same notation as in [GLS3]: the symbol Σ(q) (resp. dΣ(q)) may refer
to finite groups in different isomorphism classes, each of them is an untwisted
(resp. twisted) finite group of Lie type with root system Σ (see [GLS3, Remark
2.2.5]). Any finite group of Lie type is quasisimple with the exception of the fol-
lowing groups: A1(2), A1(3),

2A2(2),
2B2(2), B2(2), G2(2),

2F4(2) and 2G2(3)
(see [GLS3, Theorem 2.2.7]).

If s ∈ π, then by [GLS3, Theorem 3.3.3], either s = 3 and K ∼= (2G2(3))
′ or

K ∼= A1(s). In the former case the order of 2G2(3)
′ is divided only by two odd

primes, thus γsπ(K) ≤ 2; in the latter case we have γsπ(K) ≤ 2 (reason as in the
proof of Theorem 5, or see for example [H]).

Assume now that s 6∈ π. By [GLS3, Paragraph 4.10], since the Sylow sub-
groups are cyclic, every element of order p ∈ π is contained in a maximal torus
of K, and clearly a maximal torus is abelian.

Therefore, we need only to bound the number of conjugacy classes of cyclic
maximal tori in K with abelian centraliser. Note that the number of conjugacy
classes of maximal tori in K is bounded by the number of different cyclotomic
polynomials evaluated in q appearing as factors of |K|. Moreover the power of
a cyclotomic polynomial in the order of K gives the rank of the corresponding
maximal torus (except possibly when the prime divides the order of the centre
but in this case the Sylow subgroup is not cyclic, see [A, (33.14)])

Recall Σ is the root system associated to K as in [GLS3, 2.3.1]; let Π =
{α1, . . . , αn} be a fundamental system for Σ as in Table 1.8 in [GLS3], α∗

be the lowest root relative to Π as defined in [GLS3, Paragraph 1.8] and set
Π∗ = Π ∪ {α∗}. We recall that |K| can be deduced from [GLS3, Table 2.2] and
the Dynkin diagrams can be found in [GLS3, Table 1.8]. Observe that, by [GLS3,
Proposition 2.6.2], if Σ0 is a root subsystem of Σ, then K contains a subsystem
subgroup H , which is a central product of groups of Lie type corresponding to
the irreducible constituents of Σ0. In order to prove the lemma, we shall show
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that for every group K and for every element g of order a prime r lying in
a maximal torus belonging to any but four conjugacy classes of maximal tori,
either the Sylow r-subgroup is not cyclic or we find a subsystem subgroup H
that is a central product of two groups H1 and H2 such that H1 contains g and
H2 is not abelian. Note that for every prime power q, A1(q) is a non-abelian
group (see [GLS3, Theorem 2.2.7]).

Let K ∼= An(q). Let m be the minimum index i such that r divides qi+1 − 1
and let Σ0 be generated by Π∗ \ {α1, αn}. Then the corresponding subsystem
subgroup is H = H1 · H2, where H1

∼= An−2(q) and H2
∼= A1(q). Thus if

m ≤ n − 1, then H1 contains an element g of order r and CK(g) contains H2

which is not abelian. Therefore, since g has an abelian centraliser, r may divide
only (qn − 1)(qn+1− 1), that is r divides Φn(q)Φn+1(q). Hence we have at most
two conjugacy classes of maximal tori with abelian centraliser.

Let K ∼= 2An(q). Let m be the minimum index i such that r divides qi+1 −
(−1)i+1. Let Σ0 be the root subsystem generated by Π∗ \ {α1, αn}. Then, the
corresponding subsystem subgroup H can be written as H = H1 · H2, where
H1

∼= 2An−2 and H2
∼= A1(q). Thus if m ≤ n−1, then H1 contains an element g

of order r and CK(g) contains H2 which is not abelian. Therefore r may divide
only (qn−(−1n))(qn+1−(−1n+1)), that is r divides either Φ2n(q)Φn+1(q) when n
is odd or Φn(q)Φ2(n+1)(q) when n is even. Hence we have at most two conjugacy
classes of maximal tori with abelian centraliser.

Let K ∼= Bn(q) and let m be the minimum i such that r divides q2i− 1. Let
Σ0 be the root subsystem generated by Π \ {α2}. Thus

Σ0 = Bn−2 ×A1.

We get H = H1 ·H2, where H1
∼= Bn−2(q) and H2

∼= A1(q). Thus if m ≤ n− 2,
then H1 contains an element g of order r and CK(g) contains H2 which is not
abelian. Therefore, every element of π may divide only (q2n − 1)(q2(n−1) − 1),
that is the elements of π are divisors either of Φn(q)Φ2n(q)Φ2(n−1)(q) when n
is odd or of Φn−1(q)Φ2n(q)Φ2(n−1)(q) when n is even. Hence we have at most
three conjugacy classes of maximal tori with abelian centraliser.

The case when K ∼= Cn(q) can be treated with a similar argument.

Let K ∼= Dn(q). Let m be the minimum i such that r divides q2i − 1. Let
Σ0 be the root subsystem generated by Π \ {α2}. Hence

Σ0 = Dn−2 ×A1

and H = H1 · H2, where H1
∼= Dn−2(q) and H2

∼= A1(q). As in the previous
cases, ifm ≤ n−3, then H1 contains an element g of order r and CK(g) contains
H2 which is not abelian. Therefore, if n is even, every element of π may divide
only (q2(n−1) − 1)(q2(n−2) − 1), that is the elements of π are divisors either of
Φn−1(q)Φ2(n−2)(q)Φ2(n−1)(q).

Now assume that n is odd. Then every element of π may divide only
(q2(n−1)−1)(q2(n−2)−1)(qn−1), or equivalently Φn−2(q)Φ2(n−1)(q)Φ2(n−2)Φn(q).
Hence every element of order a prime in π is contained in a conjugate of at most
four maximal tori.

Let K ∼= 2Dn(q). Let m be the minimum i such that r divides q2i − 1. Let
Σ0 be the root subsystem generated by Π \ {α2}. Hence

Σ0 = Dn−2 ×A1
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and H = H1 ·H2, where H1
∼= 2Dn−2(q) and H2

∼= A1(q). As in the previous
cases, if m ≤ n − 3, then H1 contains an element g of order r and CK(g)
contains H2 which is not abelian. Therefore every element of π may divide only
(q2(n−2) − 1)(q2(n−1) − 1)(qn + 1), that is the elements of π are divisors either
of Φ2n(q)Φ2(n−1)(q)Φ2(n−2)(q)Φn−2(q) when n is odd or of Φ2n(q)Φ2(n−1)(q)
Φ2(n−2)(q)Φn−1(q) when n is even. Hence every element of order a prime in π
is contained in a conjugate of at most four maximal tori.

Let K ∼= 3D4(q). Then |K|s′ = (q2 − 1)(q8 + q4 +1)(q6 − 1) = Φ1(q)
2Φ2(q)

2

Φ3(q)Φ4(q)Φ6(q)
2Φ12(q) and thus we have that a Sylow r-subgroup ofK is cyclic

if and only if r divides only Φ3(q)Φ4(q)Φ12(q). Hence the elements of order a
prime in π are contained in the conjugates of at most three maximal tori of K.

LetK ∼= G2(q). Then |K|s′ = (q2−1)(q6−1) = Φ1(q)
2Φ2(q)

2Φ3(q)Φ6(q) and
thus a Sylow r-subgroup of K is cyclic if and only if r divides only Φ3(q)Φ6(q).
Hence the elements of order a prime in π are contained in the conjugates of at
most two maximal tori of K.

LetK ∼= F4(q). Then |K|s′ = (q2−1)(q6−1)(q8−1)(q12−1) = Φ1(q)
4Φ2(q)

4

Φ3(q)
2Φ4(q)

2Φ6(q)
2Φ8(q)Φ12(q) and thus a Sylow r-subgroup of K is cyclic if

and only if r divides only Φ8(q)Φ12(q). Hence the elements of order a prime in
π are contained in the conjugates of at most two maximal tori of K.

Let K ∼= E6(q). Then |K|s′ = (q2 − 1)(q5 − 1)(q6 − 1)(q8 − 1)(q9 − 1)
(q12 − 1) and a Sylow r-subgroup of K is cyclic if and only if r divides only
Φ5(q)Φ8(q)Φ9(q)Φ12(q). Hence the elements of order a prime in π are contained
in the conjugates of at most four maximal tori of K.

Let K ∼= 2E6(q). Then |K|s′ = (q2 − 1)(q5 + 1)(q6 − 1)(q8 − 1)(q9 +
1)(q12 − 1) and a Sylow r-subgroup of K is cyclic if and only if r divides only
Φ8(q)Φ10(q)Φ12(q)Φ18(q). Hence the elements of order a prime in π are con-
tained in the conjugates of at most four maximal tori of K.

Let K ∼= E7(q). Then |K|s′ = (q2− 1)(q6− 1)(q8− 1)(q10− 1)(q12− 1)(q14−
1)(q18 − 1) and a Sylow r-subgroup of K is cyclic if and only if r divides only

Φ5(q)Φ7(q)Φ8(q)Φ9(q)Φ10(q)Φ12(q)Φ14(q)Φ18(q).

Let H be the subgroup that arises from the root subsystem Σ0 of Σ generated
by the set Π∗ \ {α1}. Then Σ0 = A1 × E6 and H = H1 ·H2 where H1

∼= A1(q)
and H2

∼= E6(q). Now if r divides Φ5(q)Φ6(q)Φ8(q)Φ9(q)Φ12(q), then the group
H2 contains an element of order r whose centralizer is not abelian. Hence the
elements of order a prime in π are contained in the conjugates of at most four
maximal tori of K.

Let K ∼= E8(q). Then |K|s′ = (q2−1)(q8−1)(q12−1)(q14−1)(q18−1)(q20−
1)(q24−1)(q30−1) and a Sylow r-subgroup of K is cyclic if and only if r divides
only

Φ7(q)Φ9(q)Φ14(q)Φ15(q)Φ18(q)Φ20(q)Φ24(q)Φ30(q).

Let H be the subgroup that arises from the root subsystem Σ0 of Σ generated
by the set Π∗ \ {α1}. Then Σ0 = A1 × E7 and H = H1 ·H2 where H1

∼= A1(q)
and H2

∼= E7(q). Now if r divides Φ7(q)Φ9(q)Φ14(q)Φ18(q), then the group
H2 contains an element of order r whose centralizer is not abelian. Hence the
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elements of order a prime in π are contained in the conjugates of at most four
maximal tori of K.

Let K ∼= 2B2(q), q even. Then |K|s′ = (q2 + 1)(q− 1) = Φ1(q)Φ4(q). Hence
the elements of order an odd prime of K are contained in the conjugates of two
maximal tori of K.

Let K ∼= 2F4(q), q even. Then |K|s′ = (q6 + 1)(q4 − 1)(q3 + 1)(q − 1) =
Φ1(q)

2Φ2(q)
2Φ4(q)

2Φ6(q)Φ12(q). Hence a Sylow r-subgroup ofK is cyclic if and
only if r divides only Φ6(q)Φ12(q) and the elements of order a prime in π are
contained in the conjugates of two maximal tori of K.

LetK ∼= 2G2(q), q a power of 3. Then |K|s′ = (q3+1)(q−1) = Φ1(q)Φ2(q)Φ6(q).
Hence the elements of K with order an odd prime distinct from 3 are contained
in the conjugates of three maximal tori of K.

7 Proof of Theorem 1

We proved Theorem 3 for hyperelliptic rotations of odd prime order. In Theo-
rem 1 the assumption that the hyperelliptic rotations have orders that are not
powers of 2, ensures that each hyperelliptic rotation has a non trivial power
whose order is an odd prime. The proof of Theorem 1 reduces to that of The-
orem 3 once we observe that powers of hyperelliptic rotations enjoy the same
properties as hyperelliptic rotations of odd prime order provided that the powers
have themselves odd prime order. As a consequence, the hyperelliptic rotations
of odd prime order can be replaced by powers of odd prime order of hyperelliptic
rotations in the proof.

Theorem 1. Let M be a closed orientable connected 3-manifold which is not
homeomorphic to S3. Let G be a finite subgroup of orientation preserving dif-
feomorphisms of M . Then G contains at most six conjugacy classes of cyclic
subgroups generated by a hyperelliptic rotation of order not a power of two.

Proof.
For each hyperelliptic rotation ϕ in G let p be an odd prime dividing its

order and f a non trivial power of ϕ of order p. The key points to reduce the
proof of Theorem 1 to that of Theorem 3 are the following:

1. As explained in Subsection 2.2, if ϕ is a hyperelliptic rotation in G and p is
an odd prime dividing the order of ϕ, then a Sylow p-subgroup of G has the
same algebraic properties as a Sylow p-subgroup where p is hyperelliptic.
These properties are all that is needed in the proof of Theorem 3. If
ϕ itself has order p and the Sylow p-subgroup has rank 2, then exactly
two cyclic groups generated by a rotation of order p are contained in
that Sylow p-subgroup. In the general case, that is, when f belongs to
the Sylow p-subgroup, this is not true anymore but we have at most two
cyclic groups of order p generated by elements with non-empty fixed-point
sets, according to Lemma 3.

2. We remark that if two hyperelliptic rotations have a common non-trivial
power, then their fixed-point sets coincide and, by Lemma 1, they generate
the same cyclic group. This implies also that if two non-trivial powers
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of two hyperelliptic rotations are conjugate, then so are the subgroups
generated by the two rotations.

3. As noted in Remark 8 we know that Proposition 7 holds also in the general
case. In the general case the subgroup O′ can be replaced by the maximal
normal solvable subgroup of odd order coprime with any prime that divides
the order of a hyperelliptic rotation andO′

2 can be replaced by the maximal
normal solvable subgroup of order coprime with any odd prime that divides
the order of a hyperelliptic rotation.

4. Theorem 4 and Proposition 4 ensure that there are at most three com-
muting cyclic subgroups of hyperelliptic rotations of order not a power of
2, also in this setting. Thus we can exploit the strategy to cover the group
with solvable groups in the general case, too, and the results of Section 5
hold.

5. In Section 6 the proof is based essentially on the algebraic structure of
the Sylow p-subgroups when p is hyperelliptic, so the arguments apply to
cover the case of hyperelliptic rotations of order not a power of 2.

Remark 13. It is worth pointing out that items 1. and 2. above imply that
if G is a finite group of orientation preserving diffeomorphisms acting on a
manifold M 6= S3 then, for any odd prime p, the cyclic subgroups generated
by hyperelliptic rotations whose orders are divisible by p belong to at most two
different conjugacy classes.

The proofs of Theorems 3 and 1 show that there are constraints on the struc-
ture of a finite group containing at least four conjugacy classes of hyperelliptic
rotations with orders not powers of 2. We have:

Proposition 11. Let G be a finite group of orientation preserving diffeomor-
phisms of a closed connected 3-manifold M 6= S3. Assume that G contains
at least four conjugacy classes of hyperelliptic rotations whose orders are not
powers of 2. Then, there is a solvable normal subgroup N of G such that:

• The layer E(G/N) has at most two components, which implies that so
does G;

• If the layer E(G/N) has two components, then E(G/N) = SL2(q) ×Z/2

SL2(q
′).

Moreover, if G/N is not a subgroup of GL4(2), then any odd prime dividing the
order of a hyperelliptic rotation does not divide the order of N .

The case of hyperelliptic rotations of order a power of 2 is considered in [Re]
and [Mec]. We remark that, if a manifold admits a hyperelliptic rotation of
order 2a, then the manifold is a Z/2-homology sphere (see [Go]). Combining
the results in [Re] and [Mec] we obtain the following result.

Theorem 9. Let M be a closed orientable connected 3-manifold which is not
homeomorphic to S3. Let G be a finite group of orientation preserving diffeo-
morphisms of M . Then G contains at most nine conjugacy classes of cyclic
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subgroups generated by a hyperelliptic rotation of order a power of 2 and at
most two of these conjugacy classes contain cyclic subgroups of order strictly
greater than 2.

Now Corollary 1 for hyperbolic manifold is a consequence of Theorems 1 and
9.

8 Finite group actions on reducible manifolds

In this short section we shall discuss finite groups of orientation preserving
diffeomorphisms generated by hyperelliptic rotations and acting on reducible
manifolds. We shall see that Theorem 3 is trivially fulfilled in this setting. The
proof we give in the general case works also for the reducible one but here the
situation is much simpler and is described by the following proposition.

Proposition 12. Let M be a reducible manifold and let G ⊂ Diff+(M) be a
finite group generated by at least two hyperelliptic rotations with distinct orders.
In this case G is isomorphic to a finite subgroup of SO(3), and thus, up to
conjugacy, G contains at most three cyclic groups generated by hyperelliptic
rotations.

Proof.
Since G is a finite group, we can assume that it acts by isometries with

respect to some Riemannian metric on M . Moreover, by the equivariant sphere
theorem, we can assume that there is a prime decomposition of M into irre-
ducible components which is G-equivariant. Note that each hyperelliptic rota-
tion must fix setwise each sphere of the decomposition since the space of orbits
is S3, hence so must G. Since G acts by isometries, its action is determined by
the action on any sphere of the decomposition. It follows that G is conjugate
to a finite subgroup of SO(3), that is cyclic, dihedral or a spherical triangular
group.

9 Proof of Theorem 2

The statement of Theorem 2 is equivalent to the following:

Theorem 10. Let M be a closed, orientable, connected, irreducible 3-manifold
which is not homeomorphic to S3, then the group Diff+(M) of orientation
preserving diffeomorphisms ofM contains at most six conjugacy classes of cyclic
subgroups generated by a hyperelliptic rotation of odd prime order.

Notice that generically one expects that two hyperelliptic rotations in the
group Diff+(M) generate an infinite subgroup.

9.1 Proof of Theorem 10 for Seifert manifolds

In this section we prove Proposition 13 which implies Theorem 10 for closed
Seifert fibred 3-manifolds. We also show that the assumption that the hyperel-
liptic rotations have odd prime orders cannot be avoided in general by exhibiting
examples of closed Seifert fibred 3-manifolds M such that Diff+(M) contains
an arbitrarily large number of conjugacy classes of cyclic subgroups generated
by hyperelliptic rotations of odd, but not prime, orders.
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Proposition 13. LetM be a closed Seifert fibred 3-manifold which is not home-
omorphic to S3. Then the group Diff+(M) of orientation preserving diffeomor-
phisms of M contains at most one conjugacy class of cyclic subgroups generated
by a hyperelliptic rotation of odd prime order except if M is a Brieskorn inte-
gral homology sphere with 3 exceptional fibres. In this latter case Diff+(M)
contains at most three non conjugate cyclic subgroups generated by hyperelliptic
rotations of odd prime orders.

Proof.
By hypothesis M is a cyclic cover of S3 branched over a knot, so it is ori-

entable and a rational homology sphere by Remark 2. Notably, M cannot be
S1 × S2 nor a Euclidean manifold, except for the Hantzsche-Wendt manifold,
see [Or, Chap. 8.2]. In particular, since M is prime it is also irreducible.

Consider a hyperelliptic rotation ψ on M of odd prime order p and let K be
the image of Fix(ψ) in the quotient S3 = M/ψ by the action of ψ. The knot
K must be hyperbolic or a torus knot, otherwise its exterior would be toroidal
and have a non-trivial JSJ-collection of essential tori which would lift to a non
trivial JSJ-collection of tori for M , since the order of ψ is p > 2 (see [JS, J] and
[BS]). By the orbifold theorem (see [BoP], [CHK]), the cyclic branched cover
with order p ≥ 3 of a hyperbolic knot is hyperbolic, with a single exception
for p = 3 when K is the the figure-eight knot and M is the Hantzsche-Wendt
Euclidean manifold. But then, by the orbifold theorem and the classification
of 3-dimensional christallographic groups, ψ is the unique, up to conjugacy,
Euclidean hyperelliptic rotation on M , see for example [Dun], [Z].

So we can assume that M is the p-fold cyclic cover of S3 branched along a
non trivial torus knot K of type (a, b), where a > 1 and b > 1 are coprime inte-
gers. Then M is a Brieskorn-Pham manifold M = V (p, a, b) = {zp + xa + yb =
0 with (z, x, y) ∈ C3 and |z|2 + |x|2 + |y|2 = 1}. A simple computation shows
that M admits a Seifert fibration with 3, p or p+ 1 exceptional fibres and base
space S2, see [Ko2, Lem. 2], or [BoPa, Lemma 6 and proof of Lemma 7]. In
particular M has a unique Seifert fibration, up to isotopy: by [Wa], [Sco2] and
[BOt] the only possible exception with base S2 and at least 3 exceptional fibres
is the double of a twisted I-bundle, which is not a rational homology sphere,
since it fibers over the circle. We distinguish now two cases:

Case 1: The integers a and b are coprime with p, and there are three singular
fibres of pairwise relatively prime orders a, b and p. By the orbifold theorem
any hyperelliptic rotation of M of order > 2 is conjugate into the circle action
S1 ⊂ Diff+(M) inducing the Seifert fibration, hence the uniqueness of the
Seifert fibration, up to isotopy, implies that M admits at most 3 non conju-
gate cyclic groups generated by hyperelliptic rotations with odd prime orders
belonging to {a, b, p}. Indeed M is a Brieskorn integral homology sphere, see
[BPZ].

Case 2: Either a = p and M has p singular fibres of order b, or a = a′p with
a′ > 1, and M has p singular fibres of order b and one extra singular fibre of
order a′. In both situations, there are p ≥ 3 exceptional fibres of order b which
are cyclically permuted by the hyperelliptic rotation ψ. As before, M has a
unique Seifert fibration, up to isotopy. Therefore, up to conjugacy, ψ is the only
hyperelliptic rotation of order p on M , and by the discussion above M cannot
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admit a hyperelliptic rotation of odd prime order q 6= p.

Remark 14. The requirement that the rotations are hyperelliptic is essential in
the proof of Proposition 13. The Brieskorn homology sphere Σ(p1, . . . , pn), n ≥
4, with n ≥ 4 exceptional fibres admits n rotations of pairwise distinct prime
orders but which are not hyperelliptic.

The hypothesis that the orders of the hyperelliptic rotations are 6= 2 cannot
be avoided either.

Indeed, Montesinos’ construction of fibre preserving hyperelliptic involutions
on Seifert fibered rational homology spheres [Mon1], [Mon2], (see also [BS, Ap-
pendix A], [BZH, Chapter 12]), shows that for any given integer n there are
infinitely many closed orientable Seifert fibred 3-manifolds with at least n con-
jugacy classes of hyperelliptic rotations of order 2.

On the other hand, the hypothesis that the orders are odd primes is sufficient
but not necessary: A careful analysis of the Seifert invariants shows that if
M 6= S3 is a Seifert rational homology sphere, thenM can be the cyclic branched
cover of a knot in S3 of order > 2 in at most three ways.

The hypotheses of Proposition 13 cannot be relaxed further, though: Propo-
sition 14 below shows that there exist closed 3-dimensional circle bundles with
arbitrarily many conjugacy classes of hyperelliptic rotations of odd, but not
prime, orders.

Proposition 14. Let N be an odd prime integer. For any integer 1 ≤ q < N
2

the Brieskorn-Pham manifold M = V ((2q + 1)(2(N−q) + 1), 2q + 1, 2(N−q) + 1)
is a circle bundle over a closed surface of genus g = 2N−1 with Euler class
±1. Hence, up to homeomorphism (possibly reversing the orientation), M de-
pends only on the integer N and admits at least N−1

2 conjugacy classes of cyclic
subgroups generated by hyperelliptic rotations of odd orders.

Proof. We remark first that the integers q and N − q are relatively prime,
because N is prime. If k is a common prime divisor of 2q+1 and 2(N−q)+1, by
Bezout identity we have 21 = 2aq+b(N−q) ≡ (−1)a+b mod k which implies that
k = 3. But then (−1)q ≡ (−1)(N−q) ≡ −1 mod 3 and thus (−1)N ≡ 1 mod 3
which is impossible since N is odd. Hence 2q + 1 and 2(N−q) + 1 are relatively
prime.

So the Brieskorn-Pham manifold M is the (2q + 1)(2(N−q) + 1)-fold cyclic
cover of S3 branched over the torus knot Kq = T (2q + 1, 2(N−q) + 1). It is
obtained by Dehn filling the (2q+1)(2(N−q)+1)-fold cyclic cover of the exterior
of the torus knot Kq along the lift of its meridian. The (2q+1)(2(N−q)+1)-fold
cyclic cover of the exterior of Kq is a trivial circle bundle over a once punctured
surface of genus g = 2N − 1. On the boundary of the torus-knot exterior the
algebraic intersection between a meridian and a fibre of the Seifert fibration of
the exterior is ±1 (the sign depends on a choice of orientation, see for example
[BZH, Chapter 3]). So on the torus boundary of the (2q + 1)(2(N−q) + 1)-
fold cyclic cover the algebraic intersection between the lift of a meridian of the
torus knot and a S1-fiber is again ±1. Hence the circle bundle structure of the
(2q +1)(2(N−q)+1)-fold cyclic cover of the exterior of the torus knot Kq can be
extended with Euler class ±1 to the Dehn filling along the lift of the meridian.
So M is a circle bundle over a closed surface of genus g = 2N−1 with Euler class
±1.
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Since the torus knots Kq = T (2q + 1, 2(N−q) + 1) are pairwise inequivalent
for 1 ≤ q ≤ N−1

2 , the cyclic subgroups generated by the hyperelliptic rotations

corresponding to the (2q+1)(2(N−q)+1)-fold cyclic branched covers of the knots
Kq are pairwise not conjugate in Diff+(M).

Remark 15. Note that the Seifert manifoldsM and their hyperelliptic rotations
constructed in Proposition 14 enjoy the following properties: If N > 8, then
no hyperelliptic rotation can commute up to conjugacy with all the remaining
ones (see Theorem 4 and [BoPa, Theorem 2]). If N > 14 no finite subgroup
of Diff+(M) can contain up to conjugacy all hyperelliptic rotations of M ,
according to Theorem 1.

9.2 Reduction to the finite group action case

The fact that Theorem 10 implies Corollary 4 follows from the existence of a
decomposition of a closed, orientable 3-manifoldM as a connected sum of prime
manifolds and the observation that a hyperelliptic rotation on M induces a hy-
perelliptic rotation on each of its prime summands. A 3-manifold admitting
a hypereliptic rotation must be a rational homology sphere, and so M cannot
have S2×S1 summands. Hence all prime summands are irreducible and at least
one is not homeomorphic to S3, since M itself is not homeomorphic to S3. This
is enough to conclude.

The remaining of this section is devoted to the proof that Theorem 3 implies
Theorem 10.

We prove the following proposition:

Proposition 15. If M is a closed, orientable, irreducible 3-manifold such that
there are k ≥ 7 conjugacy classes of cyclic subgroups of Diff+(M) generated
by hyperelliptic rotations of odd prime order, then M is homeomorphic to S3.

Proof.
Let M be a closed, orientable, irreducible 3-manifold such that Diff+(M)

contains k ≥ 7 conjugacy classes of cyclic subgroups generated by hyperelliptic
rotations of odd prime orders.

According to the orbifold theorem (see [BoP], [BMP], [CHK]), a closed ori-
entable irreducible manifold M admitting a rotation has geometric decomposi-
tion. This means that M can be split along a (possibly empty) finite collection
of π1-injective embedded tori into submanifolds carrying either a hyperbolic or
a Seifert fibered structure. This splitting along tori is unique up to isotopy and
is called the JSJ-decomposition of M , see for example [NS], [BMP, chapter 3].
In particular, if its JSJ-decomposition is trivial, M admits either a hyperbolic
or a Seifert fibred structure.

First we see that M cannot be hyperbolic. Indeed, if the manifold M is
hyperbolic then, by the orbifold theorem, any hyperelliptic rotation is conju-
gate into the finite group Isom+(M) of orientation preserving isometries of M .
Hence, applying Theorem 3 to G = Isom+(M), we see that k ≤ 6 against the
hypothesis.

If the manifold M is Seifert fibred, it follows readily from Proposition 13 of
the previous section that M = S3. So we are left to exclude the case where the
JSJ-decomposition of M is not empty.
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Consider the JSJ-decomposition of M : each geometric piece admits either
a complete hyperbolic structure with finite volume or a Seifert fibred product
structure with orientable base. Moreover, the geometry of each piece is unique,
up to isotopy.

Let Ψ = {ψ1, . . . , ψk, k ≥ 7} be the set of hyperelliptic rotations which
generate non conjugate cyclic subgroups in Diff+(M). By the orbifold theorem
[BoP], [BMP], [CHK], after conjugacy, one can assume that each hyperelliptic
rotation preserves the JSJ-decomposition, acts isometrically on the hyperbolic
pieces, and respects the product structure on the Seifert pieces. We say that
they are geometric.

Let Γ be the dual graph of the JSJ-decomposition: it is a tree, for M is a
rational homology sphere (in fact, the dual graph of a manifold which is the
cyclic branched cover of a knot is always a tree, regardless of the order of the
covering). Let H ⊂ Diff+(M) be the group of diffeomorphisms ofM generated
by the set Ψ of geometric hyperelliptic rotations. By [BoPa, Thm 1], there is
a subset Ψ0 ⊂ Ψ of k0 ≥ 4 hyperelliptic rotations with pairwise distinct odd
prime order, say Ψ0 = {ψi, i = 1, . . . , k0}.

LetHΓ denote the image of the induced representation ofH in Aut(Γ). Since
rotations of finite odd order cannot induce an inversion on any edge of Γ, the
finite group HΓ must fix point-wise a non-empty subtree Γf of Γ.

The idea of the proof is now analogous to the ones in [BoPa] and [BPZ]: we
start by showing that, up to conjugacy, the k0 ≥ 4 hyperelliptic rotations with
pairwise distinct odd prime orders can be chosen to commute on the submani-
fold Mf of M corresponding to the subtree Γf . We consider then the maximal
subtree corresponding to a submanifold of M on which these hyperelliptic rota-
tions commute up to conjugacy and prove that such subtree is in fact Γ. Then
the conclusion follows as in the proof of Theorem 4, by applying Proposition 4.

The first step of the proof is achieved by the following proposition:

Proposition 16. The hyperelliptic rotations in Ψ0 commute, up to conjugacy
in Diff+(M), on the submanifold Mf of M corresponding to the subtree Γf .

Proof.
Since the hyperelliptic rotations in Φ have odd orders, either Γf contains an

edge, or it consists of a single vertex. We shall analyse these two cases.

Case 1: Mf contains an edge.

Claim 7. Assume that Γf contains an edge and let T denote the corresponding
torus. The hyperelliptic rotations in Ψ0 commute, up to conjugacy in Diff+(M),
on the geometric pieces of M adjacent to T .

Proof.
The geometric pieces adjacent to T are left invariant by the hyperelliptic

rotations in Ψ0, since their orders are odd. Let V denote one of the two adjacent
geometric pieces: each hyperelliptic rotation acts non-trivially on V with odd
prime order. We distinguish two cases according to the geometry of V .
V is hyperbolic. In this case all rotations act as isometries and leave a cusp
invariant. Since their order is odd, the rotations must act as translations along
horospheres, and thus commute.
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Note that, even in the case where a rotation has order 3, its axis cannot
meet a torus of the JSJ-decomposition of M for each such torus is separating
and cannot meet the axis in an odd number of points.
V is Seifert fibred. In this case we can assume that the hyperelliptic rotations
in Ψ preserve the Seifert fibration with orientable base. Since their orders are
odd and prime, each one preserves the orientation of the fibres and of the base.
The conjugacy class of a fiber-preserving rotation of V with odd prime order
depends only on its combinatorial behaviour, i.e. its translation action along the
fibre and the induced permutation on cone points and boundary components of
the base. In particular, two geometric rotations with odd prime order having
the same combinatorial data are conjugate via a diffeomorphism isotopic to the
identity.

Since the hyperelliptic rotations in Ψ0 have pairwise distinct odd prime
orders, an analysis of the different cases described in Lemma 7 below shows that
at most one among these hyperelliptic rotations can induce a non trivial action
on the base of the fibration, and thus the remaining ones act by translation
along the fibres and induce the idendity on the base. Since the translation
along the fibres commutes with every fiber-preserving diffeomorphism of V , the
hyperelliptic rotations in Ψ0 commute on V .

Lemma 7 describes the Seifert fibred pieces of a manifold admitting a hy-
perelliptic rotation of odd prime order, as well as the action of the rotation on
the pieces. Its proof can be found in [BoPa, Lemma 6 and proof of Lemma 7],
see also [Ko2, Lem. 2].

Lemma 7. Let M be an irreducible 3-manifold admitting a non trivial JSJ-
decomposition. Assume that M admits a hyperelliptic rotation of prime odd
order p. Let V be a Seifert piece of the JSJ-decomposition for M . Then the
base B of V can be:

1. A disc with 2 cone points. In this case either the rotation freely permutes p
copies of V or leaves V invariant and acts by translating along the fibres.

2. A disc with p cone points. In this case the rotation leaves V invariant
and cyclically permutes the singular fibres, while leaving a regular one
invariant.

3. A disc with p+1 cone points. In this case the rotation leaves V and a sin-
gular fibre invariant, while cyclically permuting the remaining p singular
fibres.

4. An annulus with 1 cone point. In this case either the rotation freely per-
mutes p copies of V or leaves V invariant and acts by translating along
the fibres.

5. An annulus with p cone points. In this case the rotation leaves V invariant
and cyclically permutes the p singular fibres.

6. A disc with p−1 holes and 1 cone point. In this case the rotation leaves V
invariant and cyclically permutes all p boundary components, while leaving
invariant the only singular fibre and a regular one.

7. A disc with k holes, k ≥ 2. In this case either the rotation freely permutes
p copies of V or leaves V invariant. In this latter case either the rotation
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acts by translating along the fibres, or k = p−1 and the rotation permutes
all the boundary components (while leaving invariant two fibres), or k = p
and the rotation permutes p boundary components, while leaving invariant
the remaining one and a regular fibre.

We conclude that the rotations in Ψ0 can be chosen to commute on the
submanifold Mf of M corresponding to Γf by using inductively at each edge of
Γf the gluing lemma below (see [Lemma 6][BPZ]). We give the proof for the
sake of completeness.

Lemma 8. If the rotations preserve a JSJ-torus T then they commute on the
union of the two geometric pieces adjacent to T .

Proof.
Let V and W be the two geometric pieces adjacent to T . By Claim 7, after

conjugacy in Diff+(M), the rotations in Ψ0 commute on V and W . Since
they have pairwise distinct odd prime orders, their restrictions on V and W
generate two cyclic groups of the same finite odd order. Let gV and gW be
generators of these two cyclic groups. Since they have odd order, they both act
by translation on T . We need the following result about the slope of translation
for such periodic transformation of the torus:

Claim 8. Let ψ be a periodic diffeomorphism of the product T 2 × [0, 1] which
is isotopic to the identity and whose restriction to each boundary torus T ×{i},
i = 0, 1, is a translation with rational slopes α0 and α1 in H1(T

2;Z). Then
α0 = α1.

Proof.
By Meeks and Scott [MS, Thm 8.1], see also [BS, Prop. 12], there is a

Euclidean product structure on T 2 × [0, 1] preserved by ψ such that ψ acts by
translation on each fiber T × {t} with rational slope αt. By continuity, the
rational slopes αt are constant.

Now the the following claim shows that the actions of gW and gV can be
glued on T .

Claim 9. The translations gV |T and gW |T have the same slope in H1(T
2;Z).

Proof.
Let Ψ0 = {ψi, i = 1, . . . , k0}. Let pi the order of ψi and qi = Πj 6=ipj . Then

the slopes αV and αW of gV |T and gW |T verify: qiαV = qiαW for i = 1, ..., k0,
by applying Claim 8 to each ψi. Since the GCD of the qi is 1, it follows that
αV = αW .

This finishes the proof of Lemma 8 and of Proposition 16 when Mf contains
an edge.

To complete the proof of Proposition 16 it remains to consider the case where
Γf is a single vertex.

Case 2: Mf is a vertex.
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Claim 10. Assume that Γf consists of a single vertex and let V denote the
corresponding geometric piece. Then the hyperelliptic rotations in Ψ0 commute
on V , up to conjugacy in Diff+(M).

Proof.
We consider again two cases according to the geometry of V .
The case where V is Seifert fibred follows once more from Lemma 7.
We consider now the case where V is hyperbolic.
In this case, the hyperelliptic rotations in Ψ act non trivially on V by isome-

tries of odd prime orders. The restriction H|V ⊂ Isom+(V ) of the action of the
subgroup H that they generate in Diff+(M) is finite.

If the action on V of the cyclic subgroups generated by two of the hyper-
elliptic rotations in Ψ are conjugate in H|V , one can conjugate the actions in
Diff+(M) to coincide on V , since any diffeomorphism in H|V extends to M .
Then by [BoPa, Lemma 10] these actions must coincide onM , contradicting the
hypothesis that the conjugacy classes of cyclic subgroups generated by the hy-
perelliptic rotations in Ψ are pairwise distinct in Diff+(M). Hence, the cyclic
subgroup generated by the k ≥ 7 hyperelliptic rotations in Ψ are pairwise not
conjugate in the finite group H|V ⊂ Isom+(V ).

Since the dual graph of the JSJ-decomposition of M is a tree, a boundary
torus T ⊂ ∂V is separating and bounds a component UT of M \ int(V ). Since,
by hypothesis, Γf consists of a single vertex, no boundary component T is
setwise fixed by the finite group H|V . This means that there is a hyperelliptic
rotation ψi ∈ Ψ of odd prime order pi such that the orbit of UT under ψi is the
disjoint union of pi copies of UT . In particular UT projects homeomorphically
onto a knot exterior in the quotient S3 = M/ψi. Therefore on each boundary
torus T = ∂UT ⊂ ∂V , there is a simple closed curve λT , unique up to isotopy,
that bounds a properly embedded incompressible and ∂-incompressible Seifert
surface ST in the knot exterior UT .

By pinching the surface ST onto a disc D2, in each component UT of M \
int(V ), one defines a degree-one map π : M −→ M ′, where M ′ is the rational
homology sphere obtained by Dehn filling each boundary torus T ⊂ V along
the curve λT .

For each hyperelliptic rotation ψi in Ψ, of odd prime order pi, the ψi-orbit
of each component UT of M \ int(V ) consists of either one or pi elements. As a
consequence, by [Sa], ψi acts equivariantly on the set of isotopy classes of curves
λT ⊂ ∂V . Hence, each ψi extends to periodic diffeomorphism ψ′

i of order pi on
M ′. Moreover, M ′ is a Z/pi-homology sphere, since so is M and π :M −→M ′

is a degree-one map. According to Smith’s theory, if Fix(ψ′) is non-empty on
M ′, then ψ′

i is a rotation on M ′. To see that Fix(ψ′) 6= ∅ on M ′ it suffices to
observe that either Fix(ψ) ⊂ V or ψi is a rotation of some UT ; in this latter
case, ψ′

i must have a fixed point on the disc D2 onto which the surface ST is
pinched. To show that ψ′

i is hyperelliptic it remains to show that the quotient
M ′/ψ′

i is homeomorphic to S3.
Since ψi acts equivariantly on the components UT of M \ int(V ) and on the

set of isotopy classes of curves λT ⊂ ∂V , the quotient S3 = M/ψi is obtained
from the compact 3-manifold V/ψi by gluing knot exteriors (maybe solid tori)
to its boundary components, in such a way that the boundaries of the Seifert
surfaces of the knot exteriors are glued to the curves λT /ψi ⊂ ∂V/ψi.

In the same way, the rotation ψ′
i acts equivariantly on the components M ′ \

38



int(V ) and on the set of isotopy classes of curves λT ⊂ ∂V . By construction,
these components are solid tori, and either the axis of the rotation is contained
in V or there exists a unique torus T ∈ ∂V such that the solid torus glued to
T to obtain M ′ contains the axis. In the latter case, by [EL, Cor. 2.2], the
rotation ψ′

i preserves a meridian disc of this solid torus and its axis is a core
of WT . It follows that the images in the quotient M ′/ψ′

i of the the solid tori
glued to ∂V are again solid tori. Hence M ′/ψ′

i is obtained from S3 by replacing
each components of S3 \ V/ψi by a solid torus, in such way that boundaries
of meridian discs of the solid tori are glued to the curves λT /ψ

′
i ⊂ ∂V/ψ′

i. It
follows that M ′/ψ′

i is again S3.
So far we have constructed a closed orientable 3-manifold M ′ with a finite

subgroup of orientation preserving diffeomorphisms HV that contains at least
seven conjugacy classes of cyclic subgroups generated by hyperelliptic rotations
of odd prime orders. Theorem 3 implies that M ′ must be S3, and thus by
the orbifold theorem [BLP] HV is conjugate to a finite subgroup of SO(4).
In particular the subgroup H0 ⊂ HV generated by the subset Ψ0 of at least 4
hyperelliptic rotations with pairwise distinct odd prime orders must be solvable.
Therefore, by Proposition 6 the induced rotations commute on M ′ and, by
restriction, the hyperelliptic rotations in Ψ0 commute on V .

In the final step of the proof we extend the commutativity on Mf to the
whole manifold M . The proof of this step is analogous to the one given in
[BPZ], since the proof there was not using the homology assumption. We give
the argument for the sake of completeness.

Proposition 17. The k0 ≥ 4 hyperelliptic rotations in Ψ0 commute, up to
conjugacy in Diff+(M), on M .

Proof.
Let Γc be the largest subtree of Γ containing Γf , such that, up to conjugacy

in Diff+(M), the rotations in Ψ0 commute on the corresponding invariant
submanifold Mc of M . We shall show that Γc = Γ. If this is not the case, we
can choose an edge contained in Γ corresponding to a boundary torus T of Mc.
Denote by UT the submanifold of M adjacent to T but not containing Mc and
by VT ⊂ UT the geometric piece adjacent to T .

Let H0 ⊂ Diff+(M) be the group of diffeomorphisms of M generated by
the set of geometric hyperelliptic rotations Ψ0 = {ψi, i = 1, . . . , k0}. Since the
rotations in Ψ0 commute on Mc and have pairwise distinct odd prime orders,
the restriction of H0 on on Mc is a cyclic group with order the product of the
orders of the rotations. Since Γf ⊂ Γc, the H0-orbit of T cannot be reduced to
only one element. Moreover each rotation ψ ∈ Ψ0 either fixes T or acts freely
on the orbit of T since its order is prime.

If no rotation in Ψ0 leaves T invariant, the H0-orbit of T contains as many
elements as the product of the orders of the rotations, for they commute onMc.
In particular, only the identity (which extends to U) stabilises a torus in the
H0-orbit of T . Note that all components of ∂Mc are in the H0-orbit of T and
bound a manifold homeomorphic to UT .

Since the rotation ψi acts freely on the H0-orbit of UT , UT is a knot exterior
in the quotient M/ψi = S3. Hence there is a well defined meridian-longitude
system on T = ∂UT and also on each torus of the H0-orbit of T . This set of
meridian-longitude systems is cyclically permuted by each ψi and thus equiv-
ariant under the action of H0.
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LetMc/H0 be the quotient ofMc by the induced cyclic action of H0 on Mc.
Then there is a unique boundary component T ′ ⊂ ∂(Mc/H0) which is the image
of the H0-orbit of T . We can glue a copy of the knot exterior UT toMc/H0 along
T ′ by identifying the image of the meridian-longitude system on ∂UT with the
projection on T ′ of the equivariant meridian-longitude systems on the H0-orbit
of T . Denote by N the resulting manifold. For all i = 1, . . . , k0, consider the
cyclic (possibly branched) cover of N of order qi =

∏
j 6=i pj which is induced

by the cover πi : Mc/ψi −→ Mc/H0. This makes sense because π1(T
′) ⊂

πi∗(π1(Mc/ψi)). Call Ñi the total space of such covering. By construction it
follows that Ñi is the quotient (Mc ∪ H0 · UT )/ψi. This implies that the ψi’s
commute on Mc ∪H0 · UT contradicting the maximality of Γc.

We can thus assume that some rotations fix T and some do not. Since all
rotations commute on Mc and have pairwise distinct odd prime orders, we see
that the orbit of T consists of as many elements as the product of the orders
of the rotations which do not fix T and each element of the orbit is fixed by
the rotations which leave T invariant. The rotations which fix T commute on
the orbit of VT according to Claim 7 and Lemma 8, and form a cyclic group
generated by, say, γ. The argument for the previous case shows that the rota-
tions acting freely on the orbit of T commute on the orbit of UT and thus on
the orbit of VT , and form again a cyclic group generated by, say, η. To reach
a contradiction to the maximality of Mc, we shall show that γ, after perhaps
some conjugacy, commutes with η on the H0-orbit of VT , in other words that
γ and ηγη−1 coincide on H0 · VT . Since η acts freely and transitively on the
H0-orbit of VT there is a natural and well-defined way to identify each element
of the orbit H0 · VT to VT itself. Note that this is easily seen to be the case if
VT is hyperbolic: this follows from Claim 7 and Claim 8. We now consider the
case when VT is Seifert fibred.

Claim 11. Assume that VT is Seifert fibred and that the restriction of γ induces
a non-trivial action on the base of VT . Then γ induces a non-trivial action on
the base of each component of the H0-orbit of VT . Moreover, up to conjugacy
on H0 · VT \ VT by diffeomorphisms which are the identity on H0 · T and extend
to M , we can assume that the restrictions of γ to these components induce the
same permutation of their boundary components and the same action on their
bases.

Proof.
By hypothesis γ and ηγη−1 coincide on ∂Mc. The action of γ on the base of

VT is non-trivial if and only if its restriction to the boundary circle of the base
corresponding to the fibres of the torus T is non-trivial. Therefore the action of
γ is non-trivial on the base of each component of H0 · VT .

By Lemma 7 and taking into account the fact that VT is a geometric piece
in the JSJ-decomposition of the knot exterior UT , the only situation in which
the action of γ on the base of VT is non-trivial is when the base of VT consists of
a disc with p holes, where p is the order of one of the rotations that generate γ,
the only one whose action is non trivial on the base of the fibration. Moreover,
the restriction of γ to the elements of H0 ·VT cyclically permutes their boundary
components which are not adjacent toMc. Up to performing Dehn twists, along
vertical tori inside the components of H0 ·VT \VT , which permute the boundary
components, we can assume that the restriction of γ induces the same cyclic
permutations on the boundary components of each element of the orbit H0 ·VT .
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We only need to check that Dehn twists permuting two boundary components
extend to the whole manifold M . This follows from the fact that the manifolds
adjacent to these components are all homeomorphic and that Dehn twist act
trivially on the homology of the boundary.

Since the actions of the restrictions of γ on the bases of the elements of
H0 · VT are combinatorially equivalent, after perhaps a further conjugacy by an
isotopy, the different restrictions can be chosen to coincide on the bases.

By Claim 7 and Claim 11 we can now deduce that the restrictions of γ and
ηγη−1 to the H0-orbit of VT commute, up to conjugacy of γ which is the identity
on the H0-orbit of T . Since γ and ηγη−1 coincide on this H0-orbit of T , we can
conclude that they coincide on the H0-orbit of VT . This finishes the proof of
Proposition 17.

Since there are at least four hyperelliptic rotations with paiwise distinct
odd prime orders in Ψ0, Proposition 15 is consequence of Proposition 17 and
Proposition 4, like in the solvable case, or by applying Theorem 4.

Remark 16. As we have seen, the strategy to prove that an irreducible manifold
M with non-trivial JSJ-decomposition cannot admit more than six conjugacy
classes of subgroups generated by hyperelliptic rotations of odd prime order
inside Diff+(M) consists in modifying by conjugacy any given set of hyperel-
liptic rotations so that the new hyperelliptic rotations commute pairwise. Note
that this strategy cannot be carried out in genral if the orders are not pairwise
coprime (see, for instance, [BoPa, Section 4.1] where the case of two hyperellip-
tic rotations of the same odd prime order, generating non conjugate subgroups,
is considered). Similarly, for hyperelliptic rotations of arbitrary orders > 2 lack
of commutativity might arise on the Seifert fibred pieces of the decomposition,
as it does for the Seifert fibred manifolds constructed in Proposition 14.

10 Appendix: non-free finite group actions on

rational homolgy spheres

In this section we will show that every finite group G admits a faithful action
by orientation preserving diffeomorphisms on some rational homology sphere so
that some elements of G have non-empty fixed-point sets.

Cooper and Long’s construction of G-actions on rational homolgy spheres in
[CL] consists in starting with a G-action on some 3-manifold and then modifying
the original manifold, notably by Dehn surgery, so that the new manifold inherits
a G-action but has “smaller” rational homology. Since their construction does
not require that the G-action is free, it can be used to prove the existence of
non-free G-actions. We will thus start by exhibiting non-free G-actions on some
3-manifold before pointing out what need to be taken into account in this setting
in order for Cooper and Long’s construction to work.

Since every cyclic group acts as a group of rotations of S3, for simplicity we
will assume that G is a finite non-cyclic group.

Claim 12. Let G be a finite non-cyclic group. There is a closed, connected,
orientable 3-manifold M on which G acts faitfully, by orientation preserving
diffeomorphisms so that there are g ∈ G\{1} with the property that Fix(g) 6= ∅.

41



Proof.
Let k ≥ 2 and let {gi}1≤i≤k+1 be a system of generators for G satisfying the

following requirements:

• for all 1 ≤ i ≤ k + 1, the order of gi is ni ≥ 2;

• gk+1 = g1g2 . . . gk.

Since G is not cyclic these conditions are not difficult to fulfill, and actually
they can be fulfilled even in the case when G is cyclic for an appropriate choice
of the set {gi}1≤i≤k+1.

Consider the free group of rank k that we wish to see as the fundamental
group of a (k + 1)-punctured 2-sphere: each generator xi corresponds to a loop
around a puncture of the sphere so that a loop around the k + 1st puncture
corresponds to the element x1x2 . . . xk. Build an orbifold O by compactifying
the punctured-sphere with cone points so that the ith puncture becomes a cone
point of order ni. The resulting orbifold has (orbifold) fundamental group with
the following presentation:

〈x1, x2, . . . , xk, xk+1 | {xni

i }1≤i≤k+1, x1 . . . xkx
−1
k+1〉.

Clearly this group surjects onto G. Such surjection gives rise to an orbifold
covering Σ −→ O, where Σ is an orientable surface on which G acts in such a
way that each element gi has non-empty fixed-point set. One can consider the
3-manifold Σ × S1: the action of G on Σ extends to a product action of G on
Σ× S1 which is trivial on the S1 factor.

To be able to repeat Cooper and Long’s construction it is now easy to observe
that it is always possible to choose G-equivariant families of simple closed curves
in M so that they miss the fixed-point sets of elements of G and either their
homology classes generate H1(M ;Q) (so that the hypothesis of [CL, Lemma
2.3] are fulfilled when we choose X to be the exterior of such families) or the
family is the G-orbit of a representative of some prescribed homology class (as
in the proof of [CL, Proposition 2.5]).

Acknowledgement The authors are indebted to M. Broué for valuable dis-
cussions on the topics of the paper.
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