A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation - Archive ouverte HAL
Article Dans Une Revue São Paulo Journal of Mathematical Sciences Année : 2015

A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation

Résumé

In this paper we consider the nonlinear Schr\"o\-din\-ger equation $i u_t +\Delta u +\kappa |u|^\alpha u=0$. We prove that if $\alpha <\frac {2} {N}$ and $\Im \kappa <0$, then every nontrivial $H^1$-solution blows up in finite or infinite time. In the case $\alpha >\frac {2} {N}$ and $\kappa \in {\mathbb C}$, we improve the existing low energy scattering results in dimensions $N\ge 7$. More precisely, we prove that if $ \frac {8} {N + \sqrt{ N^2 +16N }} < \alpha \le \frac {4} {N} $, then small data give rise to global, scattering solutions in $H^1$.

Dates et versions

hal-01158899 , version 1 (02-06-2015)

Identifiants

Citer

Thierry Cazenave, Simão Correia, Flavio Dickstein, Fred B. Weissler. A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation. São Paulo Journal of Mathematical Sciences, 2015, 9 (2), pp.146-161. ⟨10.1007/s40863-015-0020-6⟩. ⟨hal-01158899⟩
198 Consultations
0 Téléchargements

Altmetric

Partager

More