Finite element quasi-interpolation and best approximation - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2017

Finite element quasi-interpolation and best approximation

Résumé

This paper introduces a quasi-interpolation operator for scalar-and vector-valued finite element spaces constructed on affine, shape-regular meshes with some continuity across mesh interfaces. This operator is stable in L^1 , is a projection, whether homogeneous boundary conditions are imposed or not, and, assuming regularity in the fractional Sobolev spaces W^{s,p} where p ∈ [1, ∞] and s can be arbitrarily close to zero, gives optimal local approximation estimates in any L^p-norm. The theory is illustrated on H^1-, H(curl)-and H(div)-conforming spaces.
Fichier principal
Vignette du fichier
quasi_interp_hal.pdf (288.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01155412 , version 1 (26-05-2015)
hal-01155412 , version 2 (29-05-2015)
hal-01155412 , version 3 (23-11-2017)

Identifiants

Citer

Alexandre Ern, Jean-Luc Guermond. Finite element quasi-interpolation and best approximation . ESAIM: Mathematical Modelling and Numerical Analysis, 2017, ⟨10.1051/m2an/2016066⟩. ⟨hal-01155412v3⟩
440 Consultations
2103 Téléchargements

Altmetric

Partager

More