BSDEs with diffusion constraint and viscous Hamilton-Jacobi equations with unbounded data - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2017

BSDEs with diffusion constraint and viscous Hamilton-Jacobi equations with unbounded data

Résumé

We provide a stochastic representation for a general class of viscous Hamilton-Jacobi (HJ) equations, which has convexity and superlinear nonlinearity in its gradient term, via a type of backward stochastic differential equation (BSDE) with constraint in the martingale part. We compare our result with the classical representation in terms of (super)quadratic BSDE, and show in particular that existence of a solution to the viscous HJ equation can be obtained under more general growth assumptions on the coefficients, including both unbounded diffusion coefficient and terminal data.
Fichier principal
Vignette du fichier
ViscousHJBCPX_revised_final.pdf (311.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01154898 , version 1 (25-05-2015)
hal-01154898 , version 2 (07-03-2017)

Identifiants

Citer

Andrea Cosso, Huyên Pham, Hao Xing. BSDEs with diffusion constraint and viscous Hamilton-Jacobi equations with unbounded data. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2017, 53 (4), ⟨10.1214/16-AIHP762⟩. ⟨hal-01154898v2⟩
455 Consultations
390 Téléchargements

Altmetric

Partager

More