GHOST: A Combinatorial Optimization Solver for RTS-related Problems - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Computational Intelligence and AI in games Année : 2016

GHOST: A Combinatorial Optimization Solver for RTS-related Problems

Alberto Uriarte
  • Fonction : Auteur
  • PersonId : 961572
Jean-François Baffier

Résumé

This paper presents GHOST, a combinatorial optimization solver an RTS AI developer can use as a blackbox to solve any problems encoded by a constraint satisfaction/optimization problem. We show a way to model three very different RTS problems by a constraint satisfaction/optimization problem, each problem belonging to a specific level of abstraction, and test our solver on them, using StarCraft as a testbed. For the three problems (the target selection problem, the wall-ion problem and the build order planning problem), GHOST shows very good results computed within some tens of milliseconds. Game AI,
Fichier principal
Vignette du fichier
ghost_arxiv.pdf (441.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01152231 , version 1 (15-05-2015)
hal-01152231 , version 2 (10-07-2020)

Identifiants

Citer

Florian Richoux, Alberto Uriarte, Jean-François Baffier. GHOST: A Combinatorial Optimization Solver for RTS-related Problems. IEEE Transactions on Computational Intelligence and AI in games, 2016, ⟨10.1109/TCIAIG.2016.2573199⟩. ⟨hal-01152231v2⟩
252 Consultations
934 Téléchargements

Altmetric

Partager

More