Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images
Résumé
This paper introduces a robust linear model to describe hyperspectral data arising from the mixture of several pure spectral signatures. This new model not only generalizes the commonly used linear mixing model but also allows for possible nonlinear effects to be handled, relying on mild assumptions regarding these nonlinearities. Based on this model, a nonlinear unmixing procedure is proposed. The standard nonnegativity and sum-to-one constraints inherent to spectral unmixing are coupled with a group-sparse constraint imposed on the nonlinearity component. The resulting objective function is minimized using a multiplicative algorithm. Simulation results obtained on synthetic and real data show that the proposed strategy competes with state-of-the-art linear and nonlinear unmixing methods.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...