Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images

Résumé

This paper introduces a robust linear model to describe hyperspectral data arising from the mixture of several pure spectral signatures. This new model not only generalizes the commonly used linear mixing model but also allows for possible nonlinear effects to be handled, relying on mild assumptions regarding these nonlinearities. Based on this model, a nonlinear unmixing procedure is proposed. The standard nonnegativity and sum-to-one constraints inherent to spectral unmixing are coupled with a group-sparse constraint imposed on the nonlinearity component. The resulting objective function is minimized using a multiplicative algorithm. Simulation results obtained on synthetic and real data show that the proposed strategy competes with state-of-the-art linear and nonlinear unmixing methods.
Fichier principal
Vignette du fichier
Dobigeon_12438.pdf (515.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01151017 , version 1 (12-05-2015)

Identifiants

  • HAL Id : hal-01151017 , version 1

Citer

Nicolas Dobigeon, Cédric Févotte. Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images. IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing - WHISPERS 2013, Jun 2013, Gainesville, United States. pp. 1-4. ⟨hal-01151017⟩
268 Consultations
470 Téléchargements

Partager

More