Chtoucas pour les groupes r\'eductifs et param\'etrisation de Langlands globale
Résumé
For any reductive group $G$ over a global function field, we use the cohomology of $G$-shtukas with multiple modifications and the geometric Satake equivalence to prove the global Langlands correspondence for $G$ in the ``automorphic to Galois'' direction. Moreover we obtain a canonical decomposition of the spaces of cuspidal automorphic forms indexed by global Langlands parameters. The proof does not rely at all on the Arthur-Selberg trace formula.