Local profiles and elliptic problems at different scales with defects
Profils locaux et problèmes elliptiques à plusieurs échelles avec défauts
Résumé
We present a possible approach to approximate at both the coarse and fine scales the solution to an elliptic equation with oscillatory coefficient when this coefficient consists of a “nice”, say periodic, function that is locally perturbed. The approach is based on a local profile, solution to an equation similar to the corrector equation in classical homogenization. The well-posedness of that equation is explored, in various functional settings depending upon the locality of the perturbation. Some related problems are discussed.
Nous présentons une approche possible pour l'approximation, à la fois à l'échelle microscopique et à l'échelle macroscopique, de la solution d'une équation elliptique dont le coefficient oscillant est un perturbation « locale » d'une fonction ayant des propriétés géométriques simples, par exemple une fonction périodique. Cette approximation nécessite de savoir déterminer un profil local, solution d'une équation analogue de l'équation du correcteur en théorie de l'homogénéisation. Nous étudions ici, dans différents cadres fonctionnels, le caractère bien posé de cette équation. Des questions reliées sont aussi évoquées.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...