A Class of Mixed Variational Problems with Applications in Contact Mechanics - Archive ouverte HAL
Chapitre D'ouvrage Année : 2015

A Class of Mixed Variational Problems with Applications in Contact Mechanics

Résumé

We provide an existence result in the study of a new class of mixed variational problems. The problems are formulated on unbounded interval of time and involve history-dependent operators. The proof is based on generalized saddle point theory and various estimates, combined with fixed point arguments. Then, we consider a new mathematical model which describes the frictionless contact between a viscoelastic body and an obstacle. The process is quasistatic and the contact is modelled with a version of the normal compliance condition with unilateral constraint, which describes both the hardness and the softness of the foundation. We list the assumption on the data, derive a variational formulation of the problem, then we use our abstract result to prove its weak solvability.
Fichier principal
Vignette du fichier
sofonea2014.pdf (155.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01143031 , version 1 (01-05-2024)

Identifiants

Citer

Mircea Sofonea. A Class of Mixed Variational Problems with Applications in Contact Mechanics. Advances in Global Optimization, pp.305-314, 2015, 978-3-319-08376-6. ⟨10.1007/978-3-319-08377-3_30⟩. ⟨hal-01143031⟩

Collections

UNIV-PERP LAMPS
86 Consultations
14 Téléchargements

Altmetric

Partager

More