Unbiasedness of some generalized adaptive multilevel splitting algorithms - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2016

Unbiasedness of some generalized adaptive multilevel splitting algorithms

Résumé

We introduce a generalization of the Adaptive Multilevel Splitting algorithm in the discrete time dynamic setting, namely when it is applied to sample rare events associated with paths of Markov chains. By interpreting the algorithm as a sequential sampler in path space, we are able to build an estimator of the rare event probability (and of any non-normalized quantity associated with this event) which is unbiased, whatever the choice of the importance function and the number of replicas. This has practical consequences on the use of this algorithm, which are illustrated through various numerical experiments.
Fichier principal
Vignette du fichier
BGGLR.pdf (3.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01142704 , version 1 (15-04-2015)

Identifiants

Citer

Charles-Edouard Bréhier, Maxime Gazeau, Ludovic Goudenège, Tony Lelièvre, Mathias Rousset. Unbiasedness of some generalized adaptive multilevel splitting algorithms. The Annals of Applied Probability, 2016, 26 (6), pp.3559 - 3601. ⟨10.1214/16-AAP1185⟩. ⟨hal-01142704⟩
460 Consultations
282 Téléchargements

Altmetric

Partager

More