ADDITIVE COMBINATORICS METHODS IN ASSOCIATIVE ALGEBRAS - Archive ouverte HAL
Article Dans Une Revue Confluentes Mathematici Année : 2017

ADDITIVE COMBINATORICS METHODS IN ASSOCIATIVE ALGEBRAS

Résumé

We adapt methods coming from additive combinatorics in groups to the study of linear span in associative unital algebras. In particular, we establish for these algebras analogues of Diderrich-Kneser's and Hamidoune's theorems on sumsets and Tao's theorem on sets of small doubling. In passing we classify the finite-dimensional algebras over infinite fields with finitely many subalgebras. These algebras play a crucial role in our linear version of Diderrich-Kneser's theorem. We also explain how the original theorems for groups we linearize can be easily deduced from our results applied to group algebras. Finally, we give lower bounds for the Minkowski product of two subsets in finite monoids by using their associated monoid algebras.
Fichier principal
Vignette du fichier
RTADD11.pdf (244.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01140707 , version 1 (09-04-2015)
hal-01140707 , version 2 (23-06-2015)

Identifiants

Citer

Vincent Beck, Cédric Lecouvey. ADDITIVE COMBINATORICS METHODS IN ASSOCIATIVE ALGEBRAS. Confluentes Mathematici, 2017, ⟨10.5802/cml.34⟩. ⟨hal-01140707v2⟩
181 Consultations
173 Téléchargements

Altmetric

Partager

More