Internal controllability of first order quasilinear hyperbolic systems with a reduced number of controls - Archive ouverte HAL Access content directly
Journal Articles SIAM Journal on Control and Optimization Year : 2017

Internal controllability of first order quasilinear hyperbolic systems with a reduced number of controls

Abstract

In this paper we investigate the exact controllability of n × n first order quasilinear hyperbolic systems by m < n internal controls that are localized in space in some part of the domain. We distinguish two situations. The first one is when the equations of the system have the same speed. In this case, we can use the method of characteristics and obtain a simple and complete characterization for linear systems. Thanks to a linear test this also provides some sufficient conditions for the local exact controllability around the trajectories of semilinear systems. However, when the speed of the equations are not anymore the same, we see that we encounter the problem of loss of derivatives if we try to control quasilinear systems with a reduced number of controls. To solve this problem, as in a prior article by J.-M. Coron and P. Lissy on a Navier-Stokes control system, we first use the notion of algebraic solvability due M. Gromov. However, in contrast with this prior article where a standard fixed point argument could be used to treat the nonlinearities, we use here a fixed point theorem of Nash-Moser type due to M. Gromov in order to handle the problem of loss of derivatives.
Fichier principal
Vignette du fichier
controllability-quasilinear-hyperbolic-systems.pdf (289.13 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01139980 , version 1 (07-04-2015)

Identifiers

Cite

Fatiha Alabau-Boussouira, Jean-Michel Coron, Guillaume Olive. Internal controllability of first order quasilinear hyperbolic systems with a reduced number of controls. SIAM Journal on Control and Optimization, 2017, 55 (1), pp.300-323. ⟨10.1137/15M1015765⟩. ⟨hal-01139980⟩
533 View
528 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More