Plates with incompatible prestrain of high order - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré Année : 2017

Plates with incompatible prestrain of high order

Résumé

We study the effective elastic behaviour of the incompatibly prestrained thin plates, characterized by a Riemann metric G on the reference configuration. We assume that the prestrain is " weak " , i.e. it induces scaling of the incompatible elastic energy E^h of order less than h^2 in terms of the plate's thickness h. We essentially prove two results. First, we establish the Γ-limit of the scaled energies h^{−4} E^h and show that it consists of a von Kármán-like energy, given in terms of the first order infinitesimal isometries and of the admissible strains on the surface isometrically immersing G_{2×2} (i.e. the prestrain metric on the midplate) in R^3. Second, we prove that in the scaling regime E^h~ h^β with β > 2, there is no other limiting theory: if inf h^{−2} E^h → 0 then inf E^h ≤ Ch^4 , and if inf h^{−4} E^h → 0 then G is realizable and hence min E^h = 0 for every h.
Fichier principal
Vignette du fichier
Prestrain.pdf (401.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01138338 , version 1 (01-04-2015)

Identifiants

Citer

Marta Lewicka, Annie Raoult, Diego Ricciotti. Plates with incompatible prestrain of high order. Annales de l'Institut Henri Poincaré, 2017, 34, pp.1883-1912. ⟨10.1016/j.anihpc.2017.01.003⟩. ⟨hal-01138338⟩
112 Consultations
144 Téléchargements

Altmetric

Partager

More