A survey on predicting the popularity of web content.
Résumé
Social media platforms have democratized the process of web content creation allowing mere consumers to become creators and distributors of content. But this has also contributed to an explosive growth of information and has intensified the online competition for users attention, since only a small number of items become popular while the rest remain unknown. Understanding what makes one item more popular than another, observing its popularity dynamics, and being able to predict its popularity has thus attracted a lot of interest in the past few years. Predicting the popularity of web content is useful in many areas such as network dimensioning (e.g., caching and replication), online marketing (e.g., recommendation systems and media advertising), or real-world outcome prediction (e.g., economical trends). In this survey, we review the current findings on web content popularity prediction. We describe the different popularity prediction models, present the features that have shown good predictive capabilities, and reveal factors known to influence web content popularity.