The use of direct-fed microbials for mitigation of ruminant methane emissions: a review - Archive ouverte HAL Access content directly
Journal Articles Animal Year : 2014

The use of direct-fed microbials for mitigation of ruminant methane emissions: a review

Abstract

Concerns about the environmental effect and the economic burden of methane (CH4) emissions from ruminants are driving the search for ways to mitigate rumen methanogenesis. The use of direct-fed microbials (DFM) is one possible option to decrease CH4 emission from ruminants. Direct-fed microbials are already used in ruminants mainly to increase productivity and to improve health, and are readily accepted by producers and consumers alike. However, studies on the use of DFM as rumen CH4 mitigants are scarce. A few studies using Saccharomyces cerevisiae have shown a CH4-decreasing effect but, to date, there has not been a systematic exploration of DFM as modulators of rumen methanogenesis. In this review, we explored biochemical pathways competing with methanogenesis that, potentially, could be modulated by the use of DFM. Pathways involving the redirection of H2 away from methanogenesis and pathways producing less H2 during feed fermentation are the preferred options. Propionate formation is an example of the latter option that in addition to decrease CH4 formation increases the retention of energy from the diet. Homoacetogenesis is a pathway using H2 to produce acetate, however up to now no acetogen has been shown to efficiently compete with methanogens in the rumen. Nitrate and sulphate reduction are pathways competing with methanogenesis, but the availability of these substances in the rumen is limited. Although there were studies using nitrate and sulphate as chemical additives, use of DFM for improving these processes and decrease the accumulation of toxic metabolites needs to be explored more. There are some other pathways such as methanotrophy and capnophily or modes of action such as inhibition of methanogens that theoretically could be provided by DFM and affect methanogenesis. We conclude that DFM is a promising alternative for rumen methane mitigation that should be further explored for their practical usage.
Fichier principal
Vignette du fichier
Jeyanathan_Rev_Animal_2014_{88B25613-DD90-40B8-A927-E793D56374F4}.pdf (317.6 Ko) Télécharger le fichier
Origin : Explicit agreement for this submission
Loading...

Dates and versions

hal-01137190 , version 1 (30-03-2015)

Identifiers

Cite

Jeyamalar Jeyanathan, Cécile Martin, Diego Morgavi. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal, 2014, 8 (2), pp.250-261. ⟨10.1017/S1751731113002085⟩. ⟨hal-01137190⟩
157 View
4142 Download

Altmetric

Share

Gmail Facebook X LinkedIn More