A new method for interpolating in a convex subset of a Hilbert space - Archive ouverte HAL
Article Dans Une Revue Computational Optimization and Applications Année : 2017

A new method for interpolating in a convex subset of a Hilbert space

Résumé

In this paper, interpolating curve or surface with linear inequality constraints is considered as a general convex optimization problem in a Reproducing Kernel Hilbert Space. We propose a new approximation method based on a discretized optimization problem in a finite-dimensional Hilbert space under the same set of constraints. We prove that the approximate solution converges uniformly to the optimal constrained interpolating function. An algorithm is derived and numerical examples with boundedness and mono-tonicity constraints in one and two dimensions are given.
Fichier principal
Vignette du fichier
Maatouk_H.pdf (605.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01136466 , version 1 (27-03-2015)
hal-01136466 , version 2 (30-12-2015)

Identifiants

Citer

Xavier Bay, Laurence Grammont, Hassan Maatouk. A new method for interpolating in a convex subset of a Hilbert space. Computational Optimization and Applications, 2017, 68 (1), pp.95-120. ⟨10.1007/s10589-017-9906-9⟩. ⟨hal-01136466v2⟩
787 Consultations
926 Téléchargements

Altmetric

Partager

More