Nonlinear unmixing of vegetated areas: a model comparison based on simulated and real hyperspectral data
Résumé
When analyzing remote sensing hyperspectral images, numerous works dealing with spectral unmixing assume the pixels result from linear combinations of the endmember signatures. However, this assumption cannot be fulfilled, in particular when considering images acquired over vegetated areas. As a consequence, several nonlinear mixing models have been recently derived to take various nonlinear effects into account when unmixing hyperspectral data. Unfortunately, these models have been empirically proposed and without thorough validation. This paper attempts to fill this gap by taking advantage of two sets of real and physical-based simulated data. Theaccuracy of various linear and nonlinear models and the corresponding unmixing algorithms is evaluated with respect to their ability of fitting the sensed pixels and of providing accurate estimates of the abundances.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...