Invariant measures for a stochastic Fokker-Planck equation - Archive ouverte HAL
Article Dans Une Revue Kinetic and Related Models Année : 2018

Invariant measures for a stochastic Fokker-Planck equation

Résumé

We study the kinetic Fokker-Planck equation perturbed by a stochastic Vlasov force term. When the noise intensity is not too large, we solve the Cauchy Problem in a class of well-localized (in velocity) functions. We also show that, when the noise intensity is sufficiently small, the system with prescribed mass admits a unique invariant measure which is exponentially mixing. The proof uses hypocoercive decay estimates and hypoelliptic gains of regularity. At last we also exhibit an explicit example showing that some restriction on the noise intensity is indeed required.
Fichier principal
Vignette du fichier
FP-inv_final.pdf (269.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01135504 , version 1 (25-03-2015)
hal-01135504 , version 2 (07-06-2019)

Identifiants

Citer

Sylvain de Moor, Luis Miguel Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models , 2018, 11 (2), pp.357--395. ⟨10.3934/krm.2018017⟩. ⟨hal-01135504v1⟩
571 Consultations
393 Téléchargements

Altmetric

Partager

More