Adaptive N-normalization for enhancing music similarity - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Adaptive N-normalization for enhancing music similarity

Résumé

The N-Normalization is an efficient method for normalizing a given similarity computed among multimedia objects. It can be considered for clustering and kernel enhancement. However, most approaches to N-Normalization parametrize the method arbitrarily in an ad-hoc manner. In this paper, we show that the optimal parameterization is tightly related to the geometry of the problem at hand. For that purpose , we propose a method for estimating an optimal parameteriza-tion given only the associated pair-wise similarities computed from any specific dataset. This allows us to normalize the similarity in a meaningful manner. More specifically, the proposed method allows us to improve retrieval performance as well as minimize unwanted phenomena such as hubs and orphans.
Fichier principal
Vignette du fichier
09e4150e5968040921000000.pdf (214.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01132539 , version 1 (17-03-2015)

Identifiants

Citer

Mathieu Lagrange, George Tzanetakis. Adaptive N-normalization for enhancing music similarity. IEEE ICASSP, May 2011, Prague, Czech Republic. ⟨10.1109/ICASSP.2011.5946422⟩. ⟨hal-01132539⟩
275 Consultations
224 Téléchargements

Altmetric

Partager

More