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ABSTRACT

The N-Normalization is an efficient method for normalizing a given
similarity computed among multimedia objects. It can be considered
for clustering and kernel enhancement. However, most approaches
to N-Normalization parametrize the method arbitrarily in an ad-hoc
manner. In this paper, we show that the optimal parameterization is
tightly related to the geometry of the problem at hand. For that pur-
pose, we propose a method for estimating an optimal parameteriza-
tion given only the associated pair-wise similarities computed from
any specific dataset. This allows us to normalize the similarity in a
meaningful manner. More specifically, the proposed method allows
us to improve retrieval performance as well as minimize unwanted
phenomena such as hubs and orphans.

Index Terms— Metric spaces, Normalization, Music Similarity

1. INTRODUCTION

Computing the distance or the similarity between some elements of
interest is the first step in many tasks such as content-based retrieval,
classification and clustering. Although each of those tasks have spe-
cific needs, one usually wants to ensure that the distance is such that:
"one item of a given class has its closest neighbors belonging to the
same class".

Unfortunately, it has been shown that computing the similarity
between complex elements described by noisy and high dimensional
features usually leads to a distance metric plagued with many un-
desirable properties. Those observations are valid for the similarity
amongst music segments [1] as well as many other tasks [2]. Some
elements, the so-called "hubs", appear to be close to any other ele-
ment while other elements, the so-called "orphans" are far from any
other elements.

The N-normalization method has been shown to efficiently en-
hance the similarity metric [3], [4]. In these works, N is empirically
set to a small value with respect to the dataset size, N << S. As
we will demonstrate, in most settings, the optimal value strongly de-
pends on the geometry of the dataset.

Therefore, there are two main contributions in this paper. First,
we demonstrate that the optimal value of N is tightly linked to the
geometry of the data set, more precisely the number of elements
within each class and that parametrizing the normalization accord-
ing to the data set is beneficial. Second, we introduce a method for
estimating the parameter N using a statistical metric similar to the
gap statistic proposed for detecting the number of clusters [5].

M.L. has been partially funded by the OSEO Quaero project.

2. BACKGROUND

Defining the similarity amongst a large number of elements is a fun-
damental problem in many information retrieval tasks. As far as mu-
sic clips are concerned, the "bag-of-frames" approach is largely used
where the audio signal is split into potentially overlapping frames.
Each of those frames is modeled as a set of features accounting for
the most important aspects of music, namely timbre, rhythm and
harmony. A prototypical implementation is to model the frames of
a given musical song using Gaussian Mixture Models (GMMs) of
Mel-Frequency Cepstrum Components (MFCCs) [1]. A Query By
Example (QBE) system built on this principle would compute for a
given query its GMM model that would be compared to each model
of the entry of the database using a given distance. Ranking those
entries according to this distance then allows us to retrieve the "clos-
est" songs to the query.

Although a lot can be done at the first steps, like providing a
richer representation of the polyphony [6], using more diverse fea-
tures [4], and considering different statistical models [1], we will
focus in this paper on an efficient post-processing method that po-
tentially improves the performance of the QBE by considering some
statistics computed over the database.

For that purpose, if the accuracy of the QBE is high, one can
consider the result of a clustering step in order to set to a high sim-
ilarity the couple of elements that are identified as belonging to the
same class [7]. If the accuracy of the QBE is low, one can consider
spectral connectivity approaches as proposed in [8].

For large scale problems, one needs computationally simple
methods such as the N-Normalization. This normalization have been
used for identifying outliers [9], improving clustering [3], and more
recently improving music similarity [4]. Within most of those ap-
proaches, the tuning parameter N is fixed a priori.

In this paper, unless stated otherwise, we use a reference QBE
system and an evaluation database which are both publicly available
and described in more detail in Section 6.

3. EVALUATION METRICS

3.1. Human and Automatic Evaluation of Retrieval Effective-
ness

Ultimately the effectiveness of any query-by-example (QBE) sys-
tem needs to be evaluated by humans. This is a time consuming
process that is typically only conducted during large scale compara-
tive evaluations of different systems. In the field of music informa-
tion retrieval, the Music Information Retrieval Evaluation Exchange
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Fig. 1. Sorted number of times an query appeared in a top 20 list
of all the entries of the database before (solid line) and after 50-
Normalization (dashed line).

(MIREX) is an example of such a comparative evaluation. For ex-
ample in MIREX 2010 audio-based music similarity and retrieval
was evaluated using a data-set of 7000 clips (each 30 seconds long)
from 10 genre groups. 100 songs (10 per genre group) were selected
as queries and the 5 most similar songs to these queries according
to each submitted algorithm were evaluated by the human graders.
Songs by the same artist were omitted from the returned results. For
each query/candidate pair the graders were asked to provide a broad
score (not-similar, somewhat similar, very similar) and a fine score
(a number between 0 and 100). These scores result in the Average
Broad Score (ABS) and Average Fine Score (AFS) metrics.

In order to approximate this evaluation process using objec-
tive measures, one can consider the Artist-filtered Genre Precision
(AGP), as it is nicely correlated with the subjective measures based
on human evaluations over the last MIREX runs. As genre labels
are frequently available for the clips of interest this measure can be
calculated automatically. A good QBE system for a query of a given
genre should return as closest elements mostly clips that belong to
the same class. The k-AGP is defined as the the number of songs
from the same genre as the query from the set of the k closest songs
to the query excluding clips from the same artist. In this paper, we
set K equal to 5 which is also the value used in MIREX.

3.2. Quantifying undesired properties

As shown in many studies [1] [2], undesired properties appear when
dealing with elements compared within high dimensional vector
spaces. These include the so-called "hubs" which are irrelevantly
close to many other elements and the so-called "orphans", which are
irrelevantly far to many other elements. In order to visualize such
undesired properties one usually counts the number of time a given
query is found in a top 20 list of every entries in the database. By
sorting those counts, a curve such as the ones plotted on Figure 1 can
be generated. On this figure, the dashed line depicts the counts ob-
tained based on the results of the reference QBE. By considering the
bottom left of the figure, one can see that orphans are present, since
some entries are never close to any other elements. By considering
the top right of the figure, one can see that hubs are also present,
since some entries are close to many other elements. One can quan-
titatively measure orphans by considering the ratio ro between the
number of queries that are never in any top 20 lists versus the size of
the database. For hubs, we count the maximum number of times a
query was in a top 20 list, noted nh or the ratio between nh and the
cardinality of the dataset. For the reference QBE and data-set used
in the paper these values are ro = 0.025 and rh = 0.0223.

4. N-NORMALIZATION

Consider a square and symmetric matrix d that encodes the output
of a given QBE system over a given data-set:

d(i, j) = QBE(i, j) (1)

where each element of the matrix is the pairwise distance in the data-
set. The N-normalized version of d is:

dN (i, j) =
d(i, j)p

d(i, iN )d(j, jN )
(2)

where iN is the Nth neighbor of element i. This operation has been
considered for enhancing spectral clustering under the term "local
scaling" in [3], and for improving retrieval in musical databases [4].
Such normalization, or scaling, is valuable as it accounts for the dis-
tribution of neighbors of a given entry in order to weight its distance
to other entries. For clustering, it allows us to deal with clusters of
different distributions, and for retrieval, it allows us to improve ac-
curacy and reduce hubs and orphans. For example, the solid line
on Figure 1 depicts the counts after applying 50-Normalization. In
this case, ro = 0.0005 and rh = 0.0095. Orphans are almost dis-
carded by the N-normalization which compensates for the fact that
the neighbors of the orphans are by definition loosely distributed.
Hubs are also reduced because the distance between a hub and a
given entry has to be small with respect to the distances to their re-
spective N-Neighbors to stay small after normalization.

In [3], N is set a priori for convenience to a small value (N = 7).
In the experiments reported in [4], the authors observed that, after a
given value (N = 25), increasing N did not improve nor decreased
significantly the accuracy. This value was then chosen by the authors
for all reported evaluations.

Even though such arbitrary setting may be convenient, it is in
fact counter intuitive as far as theory is concerned. As stated in
the introduction, one usually wants to ensure that: "one item of a
given class has its closest neighbors belonging to the same class". A
quantitative reformulation of this statement is to maximize the inter-
class distance and minimize the intra- class distance. In this case, N
should be chosen so that iN is most of the time at the boundary of
the class which includes element i.

To illustrate this, let us consider a synthetic dataset of 30 classes
each of 40 2-dimensional points whose centroids are equally dis-
tributed over a diagonal, i.e. the coordinates of the centroids are
(1, 1), (2, 2), (3, 3), .... Within each class, the points are distributed
around their centroids following a Gaussian distribution of standard
deviation equal to 0.25. Figure 2(a) depicts with solid line the ac-
curacy as a function of N after applying N-normalization. In this
case, setting N as a low value is harmful as far as accuracy is con-
cerned, and the maximal performance is reached when N is around
the number of elements within each class.

When dealing with realistic data, several phenomena can influ-
ence the optimal N setting. The presence of outliers supports con-
sidering a smaller N than the number of elements within each class.
Let us consider a sampling of the real dataset described in Section 6
composed of 11 classes each of 55 elements. The solid line on 2(b)
depicts the accuracy which reaches a maximum at N = 30 which is
a lower than the number of elements per class.
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Fig. 2. Accuracy with (solid line), without N-normalization (dotted
line) and inconsistency indicator value (dashed line) as a function
of N over an artificial dataset (a), a real balanced dataset (b). The
indicator curve is unrelated to Y-axis values and have been rescaled
for readability. The average number of elements per class is plotted
as a vertical line.

5. DETERMINING N

As shown in the previous section, the optimal N is function of the
geometry of the dataset. Even in noisy and unbalanced settings, a
value a bit lower than the mean cardinality of the classes seems to be
a good choice. However, in practical settings, this piece of informa-
tion is unavailable. One then needs to estimate N according to some
relevance criterion computed solely over the data at hand.

Intuitively speaking, in a well organized dataset, nearest neigh-
bors will "see the world" in a consistent manner. That is, if 2 ele-
ments i and j are close, their distances to any other element k should
be about the same. Hubs are elements that are arbitrarily close to a
large number of elements. So, in the case of hubs, this assertion does
not hold anymore as this would imply that every element would be a
hub. The same reasoning applies to orphans.

5.1. Inconsistency criterion

We propose the following criterion for quantifying how well orga-
nized the studied dataset is given a distance function d :

Id(N) =
SX

k=1

SX
j=1

„
dN (k, j) − dN (km, j)

dN (k, j) + dN (km, j)

«2

(3)

where km is the closest neighbor of k. In well organized datasets,
Id(N) is low and will increase in the presence of hubs and orphans.
On Figure 3, a local minima can be observed for N = 40, which
corresponds to the number of elements within each class. However,
in realistic settings it is not trivial to automatically detect such local
minima.
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Fig. 3. Inconsistency criterion versus N for the artificial dataset
(solid line) and 2 corresponding null distributions (dashed lines).
Curves have been centered for readability purposes.

5.2. Testing against null distributions

As proposed in [5] for determining the number of clusters, it is more
robust to standardize the criterion (I in our case) by comparing it
with its expectation under an appropriate null reference distribution
of the data.

In order to generate such null reference in the feature space, typ-
ically a Monte-carlo sampling is performed. Though, in our setting,
the dimensionality of the feature space is unknown. We therefore
propose to generate the null distance matrices by randomly permut-
ing the distances.

db(i, j) = d(rb(i), rb(j)) (4)

where rb is a randomly generated permutation vector.
This allows us to have null distance matrices which have the

same distribution and therefore the same intrinsic dimension with-
out any structural information left. In such setting, it is therefore
intended that the N-Normalization will not have positive effects at
specific values of N . This is illustrated on Figure 3 by the 2 dotted
curves which show the inconsistency for 2 null distance matrices.
Their minimal value have been set to 0 for readability purposes. For
those 2 curves, no significant minima can be observed. We therefore
consider the following normalized inconsistency criterion:

NId(N) = 1/B
BX

b=1

log(Idb(N) − log(Id(N)) (5)

where B is the number of null distance matrices, set to 2 in the exper-
iments reported in the paper. In order to reduce spurious maxima, an
order 10 median filtering is applied to NId(N) as a post-processing
step. For illustration purposes, NId is depicted with a dashed line on
Figure 2. In the synthetic case, there is an almost perfect correlation
between the optimal N , the number of elements per class and the
first and maximal peak of NId(N). In more realistic settings, the
correlation with the number of elements per class is lost. However,
there is still a good correlation between high values of NId(N) and
high accuracy. We therefore propose argmaxNId(N) as an esti-
mate for the optimal N .

6. EXPERIMENTS

Unless stated otherwise, the publicly-available Magnatatune dataset
is considered1. It is composed of 5393 songs. Each of those songs
are split into 30-second audio chunks that have been tagged with a
large vocabulary by the community. In order to assign a tag of genre
to each song, we proceed as follows. First, a smaller vocabulary is

1http://tagatune.org/Magnatagatune.html



Balanced QBE 25-Norm A-Norm Opt-Norm

5-AGP 0.274 0.284 0.286 0.287

nh 114 47 54 50

ro 0.027 0.0005 0.0009 0.0014

Unbalanced QBE 25-Norm A-Norm Opt-Norm

5-AGP 0.363 0.359 0.366 0.366

nh 113 46 55 53

ro 0.0259 0.0005 0.0017 0.0015

Mirex QBE 25-Norm A-Norm Opt-Norm

5-AGP 0.465 0.479 0.481 n-c

AFS 45.84 46.54 46.6 n-c

ABS 0.94 0.97 0.968 n-c

Table 1. Results for balanced and unbalanced sampled datasets
taken from the Magnatagatune dataset and Mirex 2010.

extracted, containing only the tags that are explicitly referring to a
musical genre. For each song, we build the list of the genre tags
assigned to each of its audio chunks. The genre tag for each song
is then assigned by majority voting. The resulting dataset is very
unbalanced, since the mean and standard deviation of the number of
elements per class are respectively about 360 and 434.

In order to evaluate the approach proposed in this paper, we con-
sider an open-source implementation for the reference QBE. It is
built using the Marsyas framework2 that implements a feature set
that has shown state-of-the-art performance in the various classifica-
tion and retrieval tasks in the last MIREX3 The distance between 2
songs is then defined as the euclidean distance between their respec-
tive normalized feature vectors.

In order to gain statistical relevance, the dataset is sampled into
balanced and unbalanced smaller partitions of 2000 elements. To
create a balanced partition, we seek for the largest set of classes that
have their cardinality equal or superior than S divided by the number
of those classes and randomly select elements within those. To create
an unbalanced dataset, some elements are randomly picked from the
original dataset, roughly keeping the same distribution of elements
within each class as the original dataset. 100 sampled dataset are
generated and used to compare the different approaches. Id(N) is
computed for N up to 2004. 25-Norm is used for reference, A-Norm
is the Adaptive normalization that considers an NA that maximizes
Id(N). Opt-Norm is the N-Normalization with Nopt maximizing
the 5-AGP. The latter can therefore be considered as an upper bound
that can only be computed when class labels are available.

As can be seen on Table 1, A-Norm improves upon the 25-Norm
as far as accuracy is concerned, both for balanced and unbalanced
datasets. However, 25-Norm reduces better unwanted phenomena,
even more than Opt-Norm, meaning that minimizing those phenom-
ena does not necessarily improve the retrieval performance. This
might be due to the fact that the metrics considered, such as nh, do
not consider if the hub is in fact a bad hub, i.e. an element close
to elements of many classes or a good hub, i.e. an element close to
many elements of its class.

The proposed approach has been submitted to MIREX 2010 in

2http://marsyas.info
3Spectral Centroid, Rolloff, Flux and the Mel- Frequency Cepstral Coef-

ficients (MFCC) as well as features related to rhythm and pitch.
4Other sampling strategies based on prior knowledge or heuristics can be

considered in order to reduce the computational complexity.

order to evaluate it on an unknown dataset and to determine if the
N-Normalization is relevant from an end user perspective. As can
be seen on the bottom of Table 1, the N-normalization is relevant for
enhancing the AGP objective measure and more importantly the AFS
and ABS subjective measures. Furthermore, optimizing the value of
N using the proposed method is beneficial as far as the AGP and
AFS are concerned.

7. CONCLUSION

In this paper, we investigated the use of the N-normalization for im-
proving the similarity between musical objects. More specifically,
a method was proposed to determine N by considering a new in-
consistency criterion computed solely over the data at hand without
knowledge of the geometry of the dataset at hand. From synthetic
datasets to realistic datasets with balanced and unbalanced geome-
tries, the proposed approach is useful for improving retrieval both
from an objective and subjective perspective. Future work will in-
clude a more in depth study of the undesired properties that are hubs
and orphans. In particular, defining new objective measure that is
able to discriminate amongst good and bad hubs and orphans.
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