Asymptotic equivalence for density estimation and Guassian white noise: an extension - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Asymptotic equivalence for density estimation and Guassian white noise: an extension

Résumé

The aim of this paper is to present an extension of the well-known asymptotic equivalence between density estimation experiments and a Gaussian white noise model. Our extension consists in enlarging the nonparametric class of the admissible densities. More precisely, we propose a way to allow densities defined on any subinterval of R, and also some discontinuous or unbounded densities are considered (so long as the discontinuity and unboundedness patterns are somehow known a priori). The concept of equivalence that we shall adopt is in the sense of the Le Cam distance between statistical models. The results are constructive: all the asymptotic equivalences are established by constructing explicit Markov kernels.
Fichier principal
Vignette du fichier
AEdensity.pdf (195.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01132442 , version 1 (17-03-2015)
hal-01132442 , version 2 (11-03-2022)

Identifiants

Citer

Ester Mariucci. Asymptotic equivalence for density estimation and Guassian white noise: an extension. 2015. ⟨hal-01132442v1⟩
193 Consultations
140 Téléchargements

Altmetric

Partager

More