Stochastic Behavior Analysis of the Gaussian Kernel-Least-Mean-Square Algorithm - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2012

Stochastic Behavior Analysis of the Gaussian Kernel-Least-Mean-Square Algorithm

Résumé

The kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlinear adaptive filtering due to its simplicity and robustness. In kernel adaptive filters, the statistics of the input to the linear filter depends on the parameters of the kernel employed. Moreover, practical implementations require a finite nonlinearity model order. A Gaussian KLMS has two design parameters, the step size and the Gaussian kernel bandwidth. Thus, its design requires analytical models for the algorithm behavior as a function of these two parameters. This paper studies the steady-state behavior and the transient behavior of the Gaussian KLMS algorithm for Gaussian inputs and a finite order nonlinearity model. In particular, we derive recursive expressions for the mean-weight-error vector and the mean-square-error. The model predictions show excellent agreement with Monte Carlo simulations in transient and steady state. This allows the explicit analytical determination of stability limits, and gives opportunity to choose the algorithm parameters a priori in order to achieve prescribed convergence speed and quality of the estimate. Design examples are presented which validate the theoretical analysis and illustrates its application.
Fichier principal
Vignette du fichier
Parreira_12401.pdf (9.65 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01130695 , version 1 (12-03-2015)

Identifiants

Citer

Wemerson D. Parreira, José Carlos M. Bermudez, Cédric Richard, Jean-Yves Tourneret. Stochastic Behavior Analysis of the Gaussian Kernel-Least-Mean-Square Algorithm. IEEE Transactions on Signal Processing, 2012, vol. 60 (n° 5), pp. 2208-2222. ⟨10.1109/TSP.2012.2186132⟩. ⟨hal-01130695⟩
253 Consultations
203 Téléchargements

Altmetric

Partager

More