The NIPALS Algorithm for Missing Functional Data
Résumé
Time-average approximation and principal component analysis of the stochastic
process underlying the functional data are the main tools for adapting NIPALS
algorithm to estimate missing data in the functional context. The influence of the
amount of missing data in the estimation of linear regression models is studied
using the PLS method. A simulation study illustrates our methodology.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...