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THE NIPALS ALGORITHM
FOR MISSING FUNCTIONAL DATA
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and MOHAMED HEDI BEN HADJ MBAREK

Time-average approximation and principal component analysis of the stochastic
process underlying the functional data are the main tools for adapting NIPALS
algorithm to estimate missing data in the functional context. The influence of the
amount of missing data in the estimation of linear regression models is studied
using the PLS method. A simulation study illustrates our methodology.
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1. INTRODUCTION

Statistical methods for data representing functions or curves have re-
ceived much attention in the recent years. The interest for such data, known
in literature as functional data, is due mainly to the difficulty to deal with
infinite dimensional spaces in the context of classical multivariate methods.
Examples of functional data can be found in several application domains such
as medicine, economics, chemometrics and many others (Ramsay and Silver-
man [11]). A well accepted model for functional data is to consider it as paths
of a stochastic process X = {Xt, t ∈ [0, T ]} taking values into a Hilbert space
of functions on some interval [0, T ]. For example, a second order stochastic
process X = {Xt, t ∈ [0, T ]} L2-continuous with sample paths in L2([0,T]) can
be used as model for describing the behavior of some quantitative parameter
associated to a process observed on a time interval of length T .

Let us suppose that for each statistical unit of the learning sample, ω, we
observe the associated curve Xω and a single real response Yω. For a new unit
ω′ for which Xω′ is known, we are interested in predicting Yω′ from Xω′ . The
linear functional regression model is the simplest approach to be considered
and an important number of research papers in the functional data field are
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devoted to the estimation of the model

(1) Y =
∫ T

0
Xtβ(t)dt + ε.

It is well known that the direct estimation of the regression coefficient
function using the least square criterion yields to an ill posed problem. Solu-
tions based on elements derived from the principal component analysis of X
have been proposed by Aguilera et al. [1] and Cardot et al. [2]. These tech-
niques are known in the literature as principal component regression (PCR).
However, the choice of principal components is not an easy task, since one
has to choose between robustness of the model (the most explanatories pc’s)
and his performances (the pc’s the most correlated with the response). As an
alternative to functional PCR, Preda and Saporta [9] have extended Partial
Least Squares (PLS) regression to the case of a functional predictor.

But how to estimate such regression models when the functional predictor
is subject to missing observation ?

If missing data is quite a common concept in finite multivariate ana-
lysis [see Little and Rubin (1987)] that is not the case for functional data.
In practice, a curve is generally observed in a finite number of time points
0 = t0 < t1 < · · · < tk = T and thus, with missing information. However, the
true form of the curve can be approximated from the points {(ti, Xti), i=1,...,k}
using interpolation or smoothing procedures (Aguilera et al. [1]). We consider
that a curve has missing data when one or several continuous part of the
curve is missing, i.e., observation was not possible. This situation occurs, for
example, for instruments recording curves (spectrometers, oscilloscopes) that
are out of service for some short time intervals. Figure 1 provides an example
of curve with missing data in two intervals of time.

The aim of this paper is to provide a methodology to estimate missing
data for functional random variables, and thus, to estimate functional regres-
sion models in the context of missing data.

Our approach for dealing with missing data in the functional framework
is to consider that the underlying process generating missing data is a jump
stochastic process M = {Mt, t ∈ [0, T ]} with two states, {0, 1}, corresponding
to the presence or absence of information. For estimating the linear model (1)
in presence of missing data, we propose to use the PLS approach after time-
average approximation (Preda [8]) and imputation of missing data by the
NIPALS algorithm (Tenenhaus [13]). The paper is organized as follows. In
Section 2 we introduce the principal component analysis for functional data
and the functional linear model. The time-averge approximation and PCR
and PLS regression approaches are presented. The process generating miss-
ing data as well as the methodology for applying the NIPALS algorithm for
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Fig. 1. Complete and incomplete paths.

estimation of missing data is presented in Section 3. Section 4 is devoted to a
simulation study.

2. PRINCIPAL COMPONENT ANALYSIS AND
LINEAR REGRESSION FOR FUNCTIONAL DATA

Let us consider the functional data as sample paths of a stochastic process
X = {Xt, t ∈ [0, T ]} with continuous time and Y be a random real variable
defined on the same probability space as X. We assume that Y is centered
and X is of second order, L2 continuous and centered for each t ∈ [0, T ].

Also known as Karhunen-Loève expansion, the principal component ana-
lysis (PCA) of the stochastic process X consists in representing Xt as

Xt =
∑
i≥1

ui(t)ξi, ∀t ∈ [0, T ],

where the set {ui}i≥1 (the principal factors) forms an orthonormal system of
deterministic functions of L2([0, T ]) and {ξi}i≥1 (principal components) are
uncorrelated zero-mean random variables. The principal factors {ui}i≥1 are
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solution of the eigenvalue equation∫ T

0
C(t, s)ui(s)ds = λiui(t),

where C(t, s) = cov(Xt, Xs), ∀t, s ∈ [0, T ]. Therefore, the principal compo-
nents {ξi}i≥1 defined as ξi =

∫ T
0 ui(t)Xtdt are eigenvectors of the Escoufier

operator WX (Escoufier [14]) defined by

WXZ =
∫ T

0
E(XtZ)Xtdt, Z ∈ L2(Ω).

Notice that the process X and the set of its principal components,
{ξk}k≥1, span the same linear space.

2.1. Linear regression on principal components (PCR)

Under the least squares criterion, the estimation of the coefficient func-
tion β of linear regression model (1) is in general a distribution rather than a
function of L2([0, T ]) (Saporta [12]). This difficulty appears also in practice
because one has generally more predictors than the number of observations.
Regression on principal components (PCR) of X (Aguilera et al. [1]) and PLS
approach (Preda and Saporta [9]) provide efficient solutions to this problem.

As in the classical setting, the process {Xt}t∈[0,T ] and the set of its prin-
cipal components, {ξk}k≥1, span the same linear space. Thus, the linear re-
gression of Y on X is equivalent to the regression on {ξk}k≥1 and we have
Ŷ =

∑
k≥1

E(Y ξk)
λk

ξk.

In practice one has to choose an approximation of order q, q ≥ 1:

ŶPCR(q) =
q∑

k=1

E(Y ξk)
λk

ξk =
∫ T

0
β̂PCR(q)(t)Xtdt,

where

β̂PCR(q) =
q∑

k=1

E(Y ξk)
λk

fk(t)

is the estimator of the coefficient regression function β obtained with the first
q principal components.

Using the first q principal components raises a problem since they are
computed independently of the response. Principal components with a great
power of explanation yield generally stable models but could be uncorrelated
with the response, whereas the principal components highly correlated with
the response could be less explanatory for X. Moreover, for functional data,
the number of principal components could be infinite. Thus, the choice of
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principal components is a trade-off between stability of the linear model and
its predictive power (see also Escabias et al. [3]). A solution to this problem
is the PLS approach.

2.2. Partial least squares regression (PLS)

The basic idea of PLS approach is to construct a set of uncorrelated
random variables {Ti, i ≥ 1} (PLS components) in the linear space spanned
by X, taking into account the correlation between Y and X. Replacing the
least squares criterion with that of maximal covariance between X and Y ,

(2) max
w∈L2([0,T ])

cov2

(
Y,

∫ T

0
Xtw(t)dt

)
,

the PLS regression offers a good alternative to PCR (Preda and Saporta [9]).
The first PLS component is given by T1 =

∫ T
0 Xtw(t)dt and further PLS

components are obtained by maximizing the covariance criterion between the
residuals of both Y and Xt with the previous components.

The PLS approximation is given by

(3) ŶPLS(k) =
k∑

i=1

ciTi =
∫ T

0
XtβPLS(k)(t)dt.

As in the finite multivariate setting (de Jong [5]), in the functional context
PLS fits closer than PCR, i.e., R2(Y, ŶPCR(k)) ≤ R2(Y, ŶPLS(k)), where R is
the linear correlation coefficient.

2.3. Time average approximation

Generally, the principal components analysis of X is realized by ap-
proximating the principal factors into a finite dimensional space of func-
tions. One of the approximations which is convenient in presence of miss-
ing data is the time-average approximation developed in Preda [8]. This ap-
proximation, easy to put in practice, consists into approximate X by a sto-
chastic process whose the sample paths are constant piecewise functions. If
∆ = {0 = t0 < t1 < · · · < tp = T} is a discretization of [0, T ] then the
time-average approximation of X is given by X∆ defined as

(4) X∆
t = mi =

1
ti − ti−1

∫ ti

ti−1

Xtdt, ∀t ∈ [ti−1, ti], i = 1, . . . , p.

Properties of this approximation with respect to the accuracy of the
approximations provided by the elements derived from principal components
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analysis are presented in Preda [8]. Let observe that the principal compo-
nent analysis in this case is equivalent with the principal component analysis
of the set of variables {mi, i = 1, . . . , p} using as metric diag(t1 − t0, . . . ,
tp − tp−1). The principal factors uk of the process X are approximated by
constant piecewise functions u∆

k obtained from the principal factors of the set
{mi, i = 1, . . . , p} and so are for the principal components, ξ∆

k . The func-
tional PCR regression of Y on X is then approximated by the PCR of Y on
the set {ξ∆

i , i = 1, . . . , k, k ≤ p}. In the same way, the PLS regression of
Y on X is approximated by the PLS regression of Y on the set of variables
{
√

ti − ti−1 ×mi, i = 1, . . . , p} (Preda and Saporta [9]).

3. MISSING DATA FOR FUNCTIONAL DATA
AND NIPALS ALGORITHM

At our knowledge, there are no works dealing with missing data for func-
tional variables. We can observe that when the situation occurs, it is often
question of the end of the curve and thus imputation of missing data is syno-
nym of time series prediction.

3.1. Missing data model

In our approach we consider that the missing information could occur in
any continuous time interval of [0, T ]. Thus, a curve can miss information of a
set of intervals [a1, b1], . . . , [am, bm]. In general, the number m of such intervals
is random as well as their length. One possible model for missing data in this
context is to consider an underlying jump continuous time process Mt with
two states, 0 and 1, defined by

(5) Mt =
{

0 if Xt is observed at time t,
1 otherwise.

Thus, for each observation X(ω) of X one has associated one observation
M(ω) of M . A curve M(ω) that corresponds to the “0” constant function
means that the curve X(ω) is completely observed. In the multivariate finite
case, it is usually to speak about the ratio of the missing data in the whole
dataset. In the functional context, we can extend this notion to the ratio of
the sum of the length of the intervals [ai, bi] within [0, T ] for all available
curves. However, if this ratio has some interpretation when the missing data
is “completely at random” (see Little and Rubin, 1987), it is difficult to justify
this measure in the case of functional data.
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Inspired by the reliability theory of repairable systems, we propose as
measure for quantify the missing information the mean time of missing obser-
vation (MTMO) defined by

(6) MTMO =
1
T

∫ T

0
U(t)dt,

where U(t) is the probability that the process X is not observable at the
instant t, i.e., U(t) = P (Mt = 1). Obviously, the simplest model for M is a
two state markovian process with exponential times for each state. Considering
that M0 = 0 and the rate parameters describing the system are λ (for state
0) and µ (for state 1) then one can show (Iosifescu et al. [6]) that

(7) MTMO =
λ

λ + µ
− λ

(λ + µ)2T
× (1− e−

λ+µ
T ).

For example, for T = 1, λ = 1 and µ = 100 we have MTMO = 0.009802 that
means the process is unobservable about of 1% of time.

3.2. Estimation of missing data by the NIPALS algorithm

The NIPALS (Nonlinear Itérative Partial Least Squares) algorithm is a
Jacobi-like iterative method used to estimate the elements of the principal
component analysis of a finite dimensional random vector. It is interesting
to note that, due to the duality between the principal factors and the prin-
cipal components, this algorithm can be adapted for datasets with missing
data (Tenenhaus [13]). In this context, NIPALS provides not only an estima-
tion of principal factors and components, but also, by the mean of the data
reconstitution formula, an imputation method for missing data.

Let us introduce the NIPALS algorithm in the multivariate finite dimen-
sional case. Let X = (X1, X2, . . . , Xp)′ be a random vector of dimension p,
p ≥ 1, such that E(Xi) = 0, ∀i ∈ 1, . . . , p. The expansion of the vector X in
terms of principal components and principal factors is a well-known result in
multivariate data analysis (Escoufier [14])

(8) X =
q∑

h=1

ξhuh,

where q = dim L2(X) and {ξh}h=1,...,q, respectively {uh}h=1,...,q, are the princi-
pal components (random variables), respectively the principal factors (vectors
in Rp) of the principal component analysis of X.
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If only the first r components are used in (8), r < q, one obtains the
approximation of order r of X by

X̂(r) =
r∑

h=1

ξhuh,

and, for each i ∈ 1, . . . , p,

X̂
(r)
i =

r∑
h=1

ξhuh(i).

The main idea of the NIPALS algorithm consists in the fact that for each
h = 1, . . . , q, uh(i) represents the slope coefficient in the linear regression of
the variable Xi on the component ξh. In the same way, if ω is an element of
Ω, ∀h = 1, . . . , q, ξh(ω) represents the slope coefficient in the linear regression
of the “variable” (X1(ω), X2(ω), . . . , Xp(ω)) on the “variable” uh (considered
as elements of Rp).

The input data of the NIPALS algorithm are N independent realizations
of the random vector X, N ≥ 1, as a N × p matrix with entries x(i, j),
i = 1, . . . , N , j = 1, . . . , p. We suppose that each column of the matrix is
centered. The output is represented by N independent realizations of the q
principal components and an estimate for the q principal factors.

The NIPALS algorithm
1. X0 = X;
2. for h = 1, 2, . . . q,

2.1. ξh = Xh−1( · , 1)(the first column of Xh−1);
2.2. repeat until convergence of uh,

2.2.1. for i = 1, 2, . . . , p,

uh(i) =

∑
j:x(j,i), ξh(j) exist

xh−1(j, i)ξh(j)∑
j:x(j,i), ξh(j) exist

ξ2
h(j)

;

2.2.2. normalize uh;
2.2.3. for i = 1, 2, . . . , N,

ξh(i) =

∑
j:x(i,j) exist

xh−1(i, j)uh(j)∑
j:x(i,j) exist

u2
h(j)

;

2.3. Xh = Xh−1 − ξhu′h.
If there are no missing data, the NIPALS algorithm is equivalent to

the SVD Jacobi algorithm for which the convergence is well known (see for
example, Golub and Van Loan [4]). In presence of missing data at random,
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the quality of NIPALS algorithm depends of several parameters, the most
important being the distribution of X, the degree of linear dependence bet-
ween the Xi’s and the size of N with respect to p (see for details Preda and
Duhamel [10]).

If {ξ̂h}h=1,...,q and {ûh}h=1,...,q are the approximations of {ξh}h=1,...,q and
{uh}h=1,...,q provided by NIPALS, then x(i, j) can be approximated by

(9) x̂(i, j) =
q∑

h=1

ξ̂h(i)ûh(j).

The explicit formula (9) defines also the approximation for missing data by
the NIPALS algorithm.

Notice that if the PCA is carried out with a particular metric M = TT ′,
then NIPALS is applied to the matrix XT ′.

NIPALS for functional data. Let X be a stochastic process.
Obviously, if the trajectories of X are piecewise constant functions with

the same set of discontinuity points, i.e., (Xt)t∈[0,T ] is defined by the sets
{ti}i=0,...,p, 0 = t0 < t1 < t2 < · · · < tp−1 < tp = T and {ci}i=0,...,p−1,
ci ∈ L2(Ω), ∀i = 1, . . . , p, such that

Xt = ci, ∀t ∈ [ti, ti+1), ∀i = 0, . . . , p− 1,

then the PCA of X is equivalent to the PCA of {ci}i=0,...,p−1 with the metric
M = diag(t1 − t0, . . . , tp − tp−1). If missing data occur, they are associated
to the variables {ci}i=0,...,p−1 and the NIPALS algorithm can be applied for
the estimation.

Let now consider that the sample paths of the stochastic process X
are not piecewise constant but completely known except some missing data
intervals. For each curve ω ∈ Ω let [a1(ω), b1(ω)], . . . , [amω(ω), bmω(ω)] be the
set of intervals corresponding to missing data (eventually empty).

In order be apply the NIPALS algorithm, we define ∆ = 0 = t0 < t1 <
· · · < tp = T as an equidistant discretization of [0, T ] with δ = ti+1 − ti
such that the length of each missing data interval [ai(ω), bi(ω)], i = 1, . . . ,mω,
ω ∈ Ω, is multiple of δ. Then, using this discretization, the time average
approximation defined by (4) yields a set of random variables mi, i = 1, . . . , p,
p = T

δ , which has missing data if there exists i, i = 1, . . . , p, such that i × δ
belongs to a missing data interval. The application of the NIPALS algorithm to
mi, i = 1, . . . , p, provides approximations for the principal component analysis
of X. For each missing time interval, data is estimated by the time-average
approximation given by (9). More details on the choice of δ can be found in
Preda [8].
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4. SIMULATION STUDY

In this study missing data are estimated by the NIPALS algorithm after
time average approximation of sample paths. The quality of this estimation
procedure is measured when linear models with functional predictor are fitted.

Let Y be a real random variable defined by the linear regression model

(10) Y =
∫ 1

0
Xtβ(t)dt + ε,

where X is the standard Brownian motion on [0, 1], β(t) = 3t3, t ∈ [0, 1] and ε
is the error term such that V (ε) = 0.1. Notice that V (Y ) = 0.5 and R2 = 0.8.
We generate n = 100 curves representing the sample paths of X observed
on a discretization ∆1 of the interval [0, 1] in 1000 equidistant intervals. The
Simpson quadrature method provides the values of Y for each curve.

The estimation of the linear model (10) is realized using the PLS ap-
proach after time-average approximation with a discretization ∆2 of 100 equi-
distant intervals. The PLS regression coefficient function, β̂PLS , is obtained
with three PLS components (cross-validation) and is represented in Figure 2.

Fig. 2. Regression coefficient function, β(t) = 3t3, and
the PLS estimate (step function) with complete data.

Missing data are now simulated for several values of MTMO. We use for
simulation a two state Markovian jump process with exponential times for the
two states as in (7). The exponential distribution is simulated with a precision
of 1/1000, thus the change points belong to ∆1. The size of the discretization
for the time average approximation is the gcd of the missing interval lengths as
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multiple of 1/1000. In Table 1 are presented the performances (measured by
R2) of the PLS regression after the estimation of missing data by the NIPALS
algorithm for several values of MTMO (λ and µ). For each value of MTMO,
the value of R2 is averaged over 50 independent samples.

Table 1. Performances of the PLS regression with missing data

Parameters MTMO R2

complete data 0 0.7645

λ = 1, µ = 100 0.00980 0.7263

λ = 1, µ = 50 0.01922 0.7288

λ = 1, µ = 20 0.04535 0.7144

λ = 2, µ = 20 0.08677 0.6625

λ = 2, µ = 10 0.15277 0.6218

λ = 2, µ = 5 0.24493 0.4872

One can observe on this example that small amounts of missing data
(MTMO < 5%) have not significant influence on the quality fit of the model
(less than 1% of R2), whereas for large amounts the quality of fit degenerates
rapidly (up to 37% of R2 for MTMO = 24.4%).

5. CONCLUSION

Based on the estimation of simple linear regression models with missing
data, the NIPALS algorithm provides estimations for the principal component
analysis of X. The expansion formula of X in terms of principal factors and
components allows estimation of missing data. A simulation study using as
model for missing data a two-state Markovian process shows the influence of
the amount of missing data on the quality fit of a linear regression model with
functional predictor.
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[12] G. Saporta, Méthodes exploratoires d’analyse de données temporelles. Cahiers B.U.R.O.,
pp. 37–38. Univ. Pierre et Marie Curie, Paris, 1981.

[13] M. Tenenhaus, La régression PLS. Théorie et pratique. Editions Technip, 1998.
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