Model Selection and Predictive Inference - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Model Selection and Predictive Inference

Résumé

Methods based on penalized likelihood cannot be applied in many problems. Statistical learning theory provide the theoretical framework for predictive inference, but model choice based on VC dimension is often not feasible. In binary classification, ROC curve and AUC provide a reasonable criterium for model choice, combined with resampling.
Fichier principal
Vignette du fichier
SaportaICTCAM2007fulltext.pdf (118.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01125334 , version 1 (25-03-2020)

Identifiants

  • HAL Id : hal-01125334 , version 1

Citer

Gilbert Saporta. Model Selection and Predictive Inference. Trends and Challenges in Applied Mathematics, Technical University of Civil Engineering, Jun 2007, Bucarest, Romania. pp.92-97. ⟨hal-01125334⟩

Collections

CNAM CEDRIC-CNAM
113 Consultations
204 Téléchargements

Partager

More