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Abstract: Methods based on penalized likelihood cannot be applied in many problems. Statistical learning 
theory provide the theoretical framework for predictive inference, but model choice based on VC dimension is 
often not feasible. In binary classification, ROC curve and AUC provide a reasonable criterium for model 
choice, combined with resampling. 
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1.Introduction 
A considerable amount of literature has been devoted to model selection by minimizing 
penalized likelihood criteria like AIC, BIC. This makes sense in the classical framework 
where a model is a simplified representation of the real world provided by an expert of the 
field. AIC and BIC have similar formulas but originates from different theories. Even in this 
context, penalized likelihood may not be applicable when there is no simple distributional 
assumption on the data (what is likelihood?) and (or) when one uses regularisation techniques 
like ridge or PLS regression where parameters are constrained (what is the actual number of 
parameters?). 
In data mining and machine learning, models come from data and not from a theory behind it: 
models are used to make predictions (supervised learning) [5]. A good model not only fits the 
data but gives accurate predictions, even if it is not interpretable. A model is nothing else but 
an algorithm and the search for the true model is vain.   
A more adapted measure of complexity is the VC-dimension which leads to the SRM 
principle for model selection which is universally strongly consistent, but the VC dimension 
is difficult to compute. Empirical measures of generalization are in general based on 
techniques like bootstrap or cross-validation [6]. 
We will focus on supervised  binary classification:  ROC curves and AUC are commonly 
used [7]. Comparing models should be done on validation (hold-out) sets and we will show on 
examples that resampling is necessary in order to get confidence intervals and how 
unexpected variability may occurr. 
 

2.Model choice and penalized likelihood 
A crude version of the likelihood principle which comes back to R.A.Fisher says that among 
several values of a parameter θ, one must choose the one which maximizes the probability 
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be extended to the choice between different parametric families of distributions (variable 
selection being a particular case of model selection). However the likelihood increases with 
the number of parameters and in order to prevent from overfitting, one uses penalized 
versions of the likelihood which are modern version of Occam’s razor or lex parsimoniae. 
The two best known criteria are Akaike’s AIC and Schwartz’s BIC [3] : 

        ( )ˆ2 ln ( ) 2AIC L kθ= − + ( )ˆ2 ln ( ) ln( )BIC L n kθ= − +  



BIC favourises more parsimonious models than AIC due to its penalization , AIC (not BIC)  is 
biassed in the following sense: if the true model belongs to the family Mi, the probability that 
AIC chooses the true model does not tend to one when the number of observations goes to 
infinity. 
It must be stressed here that there is no rationale to use simultaneously AIC and BIC, since 
they come from different theories: AIC is an approximation of the Kullback-Leibler 
divergence between the true model and the estimated one, while BIC comes from a bayesian 
choice based on the maximisation of the posterior probability of the model, given the data.  
There are severe practical limitations in the use of penalized likelihood which cannot be 
applied to many popular predictive models such as decision trees, ridge or PLS regression, 
since there may be no simple likelihood nor a simple number of parameters: what is eg the 
number of parameters for a ridge regression?  
Both criteria assumes the existence of a “true” model belonging to the family of distributions 
of interest. This is of course questionable and we must remind of the famous dictum from 
G.E.P.Box [1]: “Essentially, all models are wrong, but some are useful”. This is especially 
true for very large data sets where no simple parsimonious model can fit to the data. 
 

3.Models for prediction 
In data mining applications, a model is merely an algorithm, coming more often from the data 
than from a theory. The focus here is not on an accurate estimation of the parameters, or on 
the adequacy of a model on past observations but on the predictive ability, ie the capacity of 
making good predictions for new observations: forecasting differs from fitting. 
 

3.1 The bias-variance trade-off [5] 
Let us consider a model like y = f(x ) + ε.  f is estimated by f̂  and we want to predict a new 
value 0y  of y for x0.  The prediction error is « twice » random : 

first, ε is not deterministic and second : the prediction 
0 0 0 0

ˆˆ ( ) ( )y y f x f xε− = + −

0
ˆŷ f= (x0) is random due to the use of 

a random sample of observations. The expected square error  is:  
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the first term is inherent to the phenomenon and cannot be reduced, the second term is the 
square bias of the model and the third is the prediction variance.  
The more complex a model is, the lower is the bias but with a high variance. 
Thus there exist an optimal choice realizing a trade-off between bias (or goodness of fit to the 
observed data) and the prediction variance. But how can we measure the complexity of a 
model? The answer is given by statistical learning theory [8]. 
 

3.2 VC dimension and model choice through SRM 
Let us consider a binary classification problem where y and ŷ  take their values in {-1 ;+1} 
with the following loss function  
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The risk is the expected loss ( ) ( , ) ( )R E L L z dP zθ= = ∫ where P(z) is the joint 

distribution of y and x. The optimal parameter θ̂ should minimize R but it is an impossible 
task since P(z) is unknown. Ordinary least squares consists in minimizing the empirical risk 
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model is consistent if Remp converges towards  R when n tends to infinity. A necessary and 
sufficient condition for consistency is that the Vapnik-Cervonenkis (VC) dimension should be 
finite. In binary supervised classification the VC-dimension h is a measure of complexity 
related to the separating capacity of a family of classifiers. h is the maximum number of 
points which can be separated by the family of functions whatever are their labels 1. h is not 
equal to the number of parameters: it may be smaller when there are regularization 
constraints. 

±

This does not mean that any configuration of h points might be « shattered » (one cannot for 
instance separate 3 points on the same line with a linear classifier in the plane), but that for 
h+1 points a non-separable configuration always exists. Vapnik’s inequality relates the 
difference between R and Remp to the VC-dimension h : 
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where 1-α is the confidence level. This inequality proves that (provided h is finite) one may 
increase the complexity of a family of models (eg increase the degree of polynomials) when 
the number of learning cases increases,  since it is the ratio h/n which is of interest. 
Small values of h gives a low difference between R and Remp . It explains why regularized 
(ridge) regression, as well as dimension reduction techniques, provide better results in 
generalisation than ordinary least squares. 
Based on the upper bound of R, SRM provides a model choice technique different from 
penalized likelihood, since no distributional assumptions are necessary . 
Given a nested family of models, the principle is (for fixed n) to choose the model which 
minimizes the upper bound : this realizes a trade-off between the fit and the generalization 
capacity. This is illustrated by figure1. 
 

Figure 1: The SRM principle 
 

Devroye [4]  and Vapnik [8] have proved that for any distribution , the SRM provides the best 
solution with probability 1 (SRM is universally strongly consistent). 
Since this is an universal inequality, the upper bound may be too large.  
An other drawback is that the VC-dimension is very difficult to compute, and in most cases,  
one only knows upper bounds for h. 



 
4. Empirical model choice for binary supervised classification 

 
4.1 Splitting the sample 

Even if Vapnik’s inequality is not directly applicable, SRM theory gives  a way to handle 
methods where penalized likelihood is not applicable. One important idea is that one has to 
realize a trade-off between the fit and the robustness of a model. 
An empirical way of choosing a model in the spirit of Statistical Learning Theory is the 
following (Hastie & al. [6]): 
Split the available data into 3 parts: the first set (training) is used to fit the various models of a 
family (parameter estimations), the second set (validation set) is used to estimate the 
prediction error of each previously estimated model and choose the best one, the last set (test 
set) is reserved to assess the generalization error rate of the best model. This last set is 
necessary, because the repeated use of the validation step is itself a “learning” step. 
However split only once the data set into 3 parts is not enough, due to sampling variations. In 
order to avoid too specific patterns, all this process should be repeated a number of times to 
get mean values and standard errors.  
In [2] extensive simulations showed that a resampled 10-fold cross-validation technique 
outperformed other estimators, such as bootstrap, for measuring the prediction error of a 
linear model. 

4.2 ROC curve and AUC 
Error rate estimation corresponds to the case where one applies a strict decision rule and 
depend strongly on prior probabilities and on group frequencies. But in many applications one 
just needs a “score” S ie a rating of the risk to be a member of one group, and any monotonic 
increasing transformation of S is also a score. Usual scores are obtained with linear classifiers 
(Fisher’s discriminant analysis, logistic regression ) but since the probability  is also a 
score ranging from 0 to 1, almost any technique gives a score. 

1( | )P G x

The ROC curve  synthesizes the performance of a score for any threshold s such that if S(x) > 
s then x is classified in group 1. Using s as a parameter, the ROC curve links the true positive 
rate to the false positive rate. The true positive rate (or specificity) is the probability of being 
classified in G1  for a member of G1 : P(S>s|G1)). The false positive rate (or 1- sensitivity) is 
the probability  of being  wrongly classified to G1 : P(S>s|G2). In other words, the ROC curve 
links the power of the procedure 1-β to α,  the probability of error of first kind. 

 

 
Figure 2 : Score distribution and the ROC curve (http://www.anaesthetist.com/mnm/stats/roc/) 

 
ROC curve is invariant with respect to increasing transformations of S. Since the ideal curve 
is the one which sticks to the edges of the unit square, the favourite measure is given by the 
area under the ROC curve (AUC). Theoretical AUC is equal to the probability of 
“concordance” : AUC = P(X1>X2) when one draws at random two observations independently 
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AUC is estimated by 
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to Mann-Whitney’s U statistic : AUC = U/n1n2. 
ROC curves and AUC measures are commonly used to compare several scores or models, as 
long as there is no crossing: the best one has the largest AUC. Model choice should be done 
by using the split sample procedure with AUC instead of the error rate. 
 

5. A case study 
The data set (http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm) consists in 768 
patients described by eight variables and a response variable which indicates whether or not 
the patient is diabetic. Two standard classification techniques: Fisher’s linear discriminant 
analysis (LDA) and logistic regression are applied. Both techniques lead to a linear score 
function 

1 10
( ) ... p pS x x xβ β β= + + + . When using the total data set, figure 3 shows quite exactly 

the same curves for both methods. 
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Figure 3 

 
For the empirical comparison, we performed LDA and logistic regression on thirty training 
samples of 70% and evaluate the AUC on their corresponding validation sets (30% ).  
The results in figure 4 confirm that linear discriminant analysis performs as well as logistic 
regression, despite the (untrue) belief that “logistic regression is a safer and more robust bet 
than the LDA model, relying on fewer assumptions” [6]. AUC has a small but non neglectable 
variability and there is a large variability due to subset selection : ROC curves may sometimes 
show very specific and unexpected patterns. 
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http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm


 
6.Discussion 

Statistical models have two meanings according to the problem : the first one is to help 
understanding a complex reality thanks to a simplified representation of the relations between 
variables, the second one in predictive inference is to give predictions. 
In the first case, a good model must be parsimonious and have a good fit : measures based on 
penalized likelihood are very useful and intellectually appealing. In the second case models 
for prediction have to be efficient for new observations and penalized likelihood is of no help 
for complex models where parameters are constrained. In predictive inference models could 
be very complex, even a “blind” technique or a black box.  
Statistical Learning Theory gives useful insights on the trade-off between fit and 
generalization. In predictive inference, one should use adequate and objective performance 
measures to choose between models. AUC is a very useful measure which integrates all 
thresholds but may be too general and one certainly needs more specific measures focussing 
on the central part of the ROC curve. 
Resampling is necessary to estimate performance and may lead to unexpected patterns. A 
limitation for all these techniques is the assumption that future data will be drawn from the 
same distribution than the one observed in the past. Results are not valid when there are 
changes in  the population.,  
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