Edge disjoint paths and max integral multiflow/min multicut theorems in planar graphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Edge disjoint paths and max integral multiflow/min multicut theorems in planar graphs

Cédric Bentz

Résumé

We generalize all the results obtained for integer multiflow and multicut problems in trees by Garg et al. [N. Garg, V.V. Vazirani and M. Yannakakis. Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18 (1997), pp. 3-20] to planar graphs with a fixed number of faces, although other classical generalizations do not lead to such results. We also introduce the class of k-edge-outerplanar graphs and bound the integrality gap for the maximum edge-disjoint paths problem in these graphs.
Fichier non déposé

Dates et versions

hal-01125124 , version 1 (06-03-2015)

Identifiants

  • HAL Id : hal-01125124 , version 1

Citer

Cédric Bentz. Edge disjoint paths and max integral multiflow/min multicut theorems in planar graphs. ICGT'05 7th Int. Colloquium on Graph Theory, Hyeres, Jan 2005, X, France. pp.55-60. ⟨hal-01125124⟩

Collections

CNAM CEDRIC-CNAM
54 Consultations
0 Téléchargements

Partager

More