Missing Data in Hierarchical Classification - a study with Personality developpment data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2001

Missing Data in Hierarchical Classification - a study with Personality developpment data

Résumé

We analyse the effect of missing data in hierarchical classification of variables according to the following factors: amount of missing data, imputation techniques, similarity coefficient, and aggregation criterion. We have used two methods of imputation, a regression method using an ordinary-least squares method and an EM algorithm. For the similarity matrices we have used the basic affinity coefficient and the Pearson's correlation coefficient. As aggregation criteria we apply average linkage, single linkage and complete linkage methods. To compare the structure of the hierarchical classifications the Spearman's coefficient between the associated ultrametrics has been used. We present here simulation experiments in two multivariate normal cases.
Fichier principal
Vignette du fichier
RC483.pdf (18.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01124655 , version 1 (12-03-2020)

Identifiants

  • HAL Id : hal-01124655 , version 1

Citer

Ana Lorga da Silva, Helena Bacelar-Nicolau, Gilbert Saporta, Manuel Geada. Missing Data in Hierarchical Classification - a study with Personality developpment data. ASMDA 2001, Jun 2001, Compiègne, France. ⟨hal-01124655⟩

Collections

CNAM CEDRIC-CNAM
74 Consultations
30 Téléchargements

Partager

More