Article Dans Une Revue Journal of Elasticity Année : 2016

Asymptotic analysis of a linear isotropic elastic composite reinforced by a thin layer of periodically distributed isotropic parallel stiff fibres.

Résumé

We present some mathematical convergence results using a two-scale method for a linear elastic isotropic medium containing one layer of parallel periodically distributed heterogeneities located in the interior of the whole domain around a plane surface \Sigma. The aim of this paper is to study the situation when the rigidity of the linearly isotropic elastic fibres is 1/ \epsilon ^ m the rigidity of the surrounding linearly isotropic elastic material. We use a two-scale convergence method adapted to the geometry of the problem (layer of fibres). In the models obtained \Sigma behaves for m = 1 as a "material surface" without membrane energy in the direction of the plane orthogonal to the direction of the fibres. For m = 3 the "material surface" has no bending energy in the direction orthogonal to the fibres.
Fichier principal
Vignette du fichier
rev3.pdf (563.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01121260 , version 1 (27-02-2015)

Identifiants

Citer

Michel Bellieud, Giuseppe Geymonat, Françoise Krasucki. Asymptotic analysis of a linear isotropic elastic composite reinforced by a thin layer of periodically distributed isotropic parallel stiff fibres.. Journal of Elasticity, 2016, 122, pp.43-74. ⟨10.1007/s10659-015-9532-7⟩. ⟨hal-01121260⟩
446 Consultations
405 Téléchargements

Altmetric

Partager

More