Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle

Résumé

We address the question of determining the eigenvalues $\lambda_n$ (listed in nondecreasing order, with multiplicities) for which Courant's nodal domain theorem is sharp i.e., for which there exists an associated eigenfunction with $n$ nodal domains (Courant-sharp eigenvalues). Following ideas going back to Pleijel (1956), we prove that the only Courant-sharp eigenvalues of the flat equilateral torus are the first and second, and that the only Courant-sharp Dirichlet eigenvalues of the equilateral triangle are the first, second, and fourth eigenvalues. In the last section we sketch similar results for the right-angled isosceles triangle and for the hemiequilateral triangle.
Fichier principal
Vignette du fichier
berard-helffer-courant-sharp-equilateral-HAL-V2-150311.pdf (1.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01120958 , version 1 (27-02-2015)
hal-01120958 , version 2 (11-03-2015)
hal-01120958 , version 3 (02-07-2015)

Identifiants

Citer

Pierre Bérard, Bernard Helffer. Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle. 2015. ⟨hal-01120958v2⟩
311 Consultations
204 Téléchargements

Altmetric

Partager

More