Adaptive estimation of the baseline hazard function in the Cox model by model selection, with high-dimensional covariates - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Planning and Inference Année : 2015

Adaptive estimation of the baseline hazard function in the Cox model by model selection, with high-dimensional covariates

Résumé

The purpose of this article is to provide an adaptive estimator of the baseline function in the Cox model with high-dimensional covariates. We consider a two-step procedure : first, we estimate the regression parameter of the Cox model via a Lasso procedure based on the partial log-likelihood, secondly, we plug this Lasso estimator into a least-squares type criterion and then perform a model selection procedure to obtain an adaptive penalized contrast estimator of the baseline function. Using non-asymptotic estimation results stated for the Lasso estimator of the regression parameter , we establish a non-asymptotic oracle inequality for this penalized contrast estimator of the baseline function, which highlights the discrepancy of the rate of convergence when the dimension of the covariates increases.
Fichier principal
Vignette du fichier
GuillouxLemlerTaupin_ModelSelection.pdf (614.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01120683 , version 1 (28-02-2015)
hal-01120683 , version 2 (01-03-2015)

Licence

Identifiants

Citer

Agathe Guilloux, Sarah Lemler, Marie-Luce Taupin. Adaptive estimation of the baseline hazard function in the Cox model by model selection, with high-dimensional covariates. Journal of Statistical Planning and Inference, 2015, 171, pp.38-62. ⟨10.1016/j.jspi.2015.11.005⟩. ⟨hal-01120683v2⟩
876 Consultations
234 Téléchargements

Altmetric

Partager

More