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Abstract

The purpose of this article is to provide an adaptive estimator of the baseline function in the
Cox model with high-dimensional covariates. We consider a two-step procedure : first, we estimate
the regression parameter of the Cox model via a Lasso procedure based on the partial log-likelihood,
secondly, we plug this Lasso estimator into a least-squares type criterion and then perform a model
selection procedure to obtain an adaptive penalized contrast estimator of the baseline function.

Using non-asymptotic estimation results stated for the Lasso estimator of the regression param-
eter, we establish a non-asymptotic oracle inequality for this penalized contrast estimator of the
baseline function, which highlights the discrepancy of the rate of convergence when the dimension
of the covariates increases.

Keywords: Survival analysis; Conditional hazard rate function; Cox’s proportional hazards model;
Right-censored data; Semi-parametric model; Nonparametric model; High-dimensional covariates;
Model selection; Non-asymptotic oracle inequalities; Concentration inequalities

1 Introduction
Consider the following Cox model, introduced by Cox (1972) and defined, for a vector of covariates
Z = (Z1, ..., Zp)T , by

λ0(t,Z) = α0(t) exp(βT0Z), (1)

where λ0 denotes the hazard rate, β0 = (β01 , ..., β0p)T ∈ Rp is the regression parameter and α0 is the
baseline hazard function. The Cox partial log-likelihood, introduced by Cox (1972), allows to estimate
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β0 without the knowledge of α0, considered as a functional nuisance parameter. For the estimation
of α0, one common way is to use a two step procedure, starting with the estimation of β0 alone and
then to plug this estimator into a non parametric type estimator α0, usually a kernel type estimator.

Let us be more specific.
When p is small compared to n, β0 is usually estimated by minimization of the opposite of the

Cox partial log-likelihood. We refer to Andersen et al. (1993), as a reference book, for the proofs of
the consistency and the asymptotic normality of β̂ when p is small compared to n. Thoses strategies
only apply when p < n and even more, they only apply when p is small compared to n. When p
growths up, becoming of the same order as n and possibly larger than n, various well known problems
appears. Among them, the minimization of the opposite of the Cox partial log-likelihood becomes
difficult and even impossible if p > n.

In high-dimension, when p is large compared to n, the Lasso procedure is one of the classical
considered strategies. The Lasso (Least Absolute Shrinkage and Selection Operator) has been first
introduced by Tibshirani (1996) in the linear regression model. It has been largely considered in
additive regression model (see for instance Knight and Fu (2000), Efron et al. (2004), Donoho et al.
(2006), Meinshausen and Bühlmann (2006), Zhao and Yu (2006), Zhang and Huang (2008), Mein-
shausen and Yu (2009) and also Juditsky and Nemirovski (2000), Nemirovski (2000), Bunea et al.
(2006; 2007a;b), Greenshtein and Ritov (2004) or Bickel et al. (2009)), and in density estimation (see
Bunea et al. (2007c) and Bertin et al. (2011)). In the particular case of the semi-parametric Cox
model, Tibshirani (1997) has proposed a Lasso procedure for the regression parameter. The Lasso
estimator of the regression parameter β̂ is defined as the minimizer of the opposite of the Cox partial
log-likelihood under an `1 type constraint, that is, suitably penalized with an `1-penalty function.
Recent results exist on the estimation of β0 in high-dimension setting. Among them one can mention
Bradic et al. (2012) who have proved asymptotic results for Lasso estimator. More recently, Bradic
and Song (2012), Kong and Nan (2012) and Huang et al. (2013) establish the first non-asymptotic
oracle inequalities (estimation and prediction bounds) for the Lasso estimator.

For the baseline hazard function and when p is small compared to n, the common estimator is a
kernel estimator, which depends on β̂ obtained by minimization of the opposite of the Cox partial log-
likelihood. This kernel estimator has been introduced by Ramlau-Hansen (1983a;b) from the Breslow
estimator of the cumulative baseline function (see Ramlau-Hansen (1983b) and Andersen et al. (1993)
for more details). In this context, Ramlau-Hansen (1983b) and Grégoire (1993) proved asymptotic
results. No non-asymptotic results and no adaptive results have to date been established for the
kernel estimator of the baseline function. Finally, when p is large compared to n, to our knowledge,
the construction of an estimator of the baseline function has not been yet considered.

In this paper, we consider a two-step procedure to estimate β0 and α0, the two parameters in
the Cox model. But our contributions focus more on the estimation of α0. In the Cox model we
consider, it is noteworthy that the high-dimension only concerns the regression parameter, whereas
the baseline function is a time function. Its estimation would not require a procedure specific to
high-dimension, besides the first step concerning the estimation of β0. We propose a procedure for
the construction of an estimator of the baseline hazard function α0, p being either smaller than n or
greater than n. It combines a Lasso procedure for β0 as a first step and a second step based on a
model selection strategy for the estimation of the baseline function α0. This model selection procedure
takes its origins in the works of Akaike (1973) and Mallows (1973), more recently formalized by Birgé
and Massart (1997) and Barron et al. (1999) for the estimation of densities and regression functions
(see the book of Massart (2007) as a reference work on model selection). In survival analysis, the
model selection has also been documented. Letué (2000) has adapted these methods to estimate the
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regression function of the non-parametric Cox model, when p < n. More recently, Brunel and Comte
(2005), Brunel et al. (2009), Brunel et al. (2010) have obtained adaptive estimation of densities in a
censoring setting. Model selection methods have also been used to estimate the intensity function of a
counting process in the multiplicative Aalen intensity model (see Reynaud-Bouret (2006) and Comte
et al. (2011)). However, the model selection procedure has never been considered, to our knowledge,
for estimating the baseline hazard function in the Cox model.

Our contributions are at least threefold: Our procedure is the first that focus on the estimation of
baseline function of the semi-parametric Cox model with high-dimentional covariates. This procedure
provide an adaptive estimator of the baseline function that works as well for small p and large p
compared to n (that is for possibly high-dimensional covariates). Furthermore, for this estimator, we
state non-asymptotic oracle inequalities, that hold, once again, p being either smaller than n or greater
than n. More precisely, we prove that the risk of this estimator achieves the best risk among estimators
in a large collection. For each model, the risk of an estimator is bounded by the sum of three terms.
The first term is a bias term involving to the approximation properties of the collection of models,
through the distance evaluated in β0 between the true baseline and the orthogonal projection of α0
on the best selected model. The second term is a penalty term of the same order than the variance
on one model, that is of order the dimension of one model over n, as expected with `0-penalty. These
two terms are the "usual" terms appearing in nonparametric estimation. It is noteworthy that these
two terms do not involve any quantity related to the risk of the Lasso estimator of β0. The last term
precisely comes from the properties of the Lasso estimator of β0. This last term is of order log(np)/n,
as expected for a Lasso estimator.

When p is small, the third last term is of order log(n)/n and, the rate is governed by the first
two terms. In that case, the penalty term being of the same order than the variance over one model,
we conclude that the model selection procedure achieves the "expected rate" of order n−2γ/(2γ+1)

when the baseline function belongs to a Besov space with smoothness parameter γ. This continues
to hold when p is of the same order than the sample size n. When p is larger than n, that is in
the so-called ultra-high dimension (see Verzelen (2012)), the rate for estimating α0 is changed, and
more precisely degraded as a price to pay for being with high dimension covariates. This degradation
follows accordingly to the order of p compared to n.

The main tools for stating our results are the theory of marked counting processes and martingales
with jumps, the theory of penalized minimum contrast estimators and concentrations inequalities
such as Talagrand inequality (see Talagrand (1996)) and a Bernstein inequality found in (see van de
Geer (1995) and Comte et al. (2011)) for unbounded martingale process and combined with chaining
methods (see Talagrand (2005) and Baraud (2010)).

The article is organized as follows. In Section 3, we describe the estimation procedure. Section 4
provides non-asymptotic oracle inequalities on the estimator of the baseline hazard function α0, in a
high-dimensional setting for β0. In section 5, we compare the performances of the resulting penalized
contrast estimator to those of the usual kernel estimator on simulated data. Section 6 is devoted to
the proofs: we state some technical results, then we establish the two main theorems and lastly we
prove the technical results. Finally, Appendix A discusses the bound of the error estimation for the
Lasso estimator of the regression parameter of the Cox model.
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2 Notations and preliminaries

2.1 Framework with counting processes

Consider the general setting of counting processes, which embeds the classical case of right censoring.
We follow here the now classical setting of Andersen et al. (1993) or Fleming and Harrington (2011).
For n independant individuals, we observe for i = 1, ..., n a counting process Ni, a random process Yi
with values in [0, 1] and a vector of covariates Zi = (Zi,1, ..., Zi,p)T ∈ Rp. Let (Ω,F ,P) be a probability
space and (Ft)t≥0 be the filtration defined by

Ft = σ{Ni(s), Yi(s), 0 ≤ s ≤ t,Zi, i = 1, ..., n}.

From the Doob-Meyer decomposition, we know that each Ni admits a compensator denote by Λi,
such that Mi = Ni−Λi is a (Ft)t≥0 local square-integrable martingale (see Andersen et al. (1993) for
details). We assume in the following that Ni has a satisfies an Aalen multiplicative intensity model.

Assumption 2.1. For each i = 1, ..., n and all t ≥ 0,

Λi(t) =
∫ t

0
λ0(s,Zi)Yi(s)ds, (2)

where λ0(t, z) = α0(t)eβT z, for z ∈ Rp.

We observe the independent and identically distributed (i.i.d.) data (Zi, Ni(t), Yi(t), i = 1, ..., n, 0 ≤
t ≤ τ), where [0, τ ] is the time interval between the beginning and the end of the study.

This general setting, introduced by Aalen (1980), embeds several particular examples as censored
data, marked Poisson processes and Markov processes (see Andersen et al. (1993) for further details).
We give here details for the right censoring case. We observe for i = 1, ..., n, (Xi, δi,Zi), where
Xi = min(Ti, Ci), δi = 1{Ti≤Ci}, Ti is the time of interest and Ci the censoring time. With these
notations, the (Ft)t≥0-adapted processes Yi and Ni are respectively defined as the at-risk process
Yi(t) = 1{Xi≥t} and the counting process Ni(t) = 1{Xi≤t,δi=1} which jumps when the ith individual
dies.

2.2 Assumptions

Before describing the estimation procedure, we introduce few assumptions on the framework defined
in Subsection 2.1.

Let Z ∈ Rp denote the generic vector of covariates with the same distribution as the vectors of
covariates Zi of each individual i and by Zj its j-th component, namely the j-th covariates of the
vector Z. Similarly, we denote by Y the generic version of the random process Yi with values in [0, 1].

We define the standard L2 and L∞-norms, for α ∈ (L2 ∩ L∞)([0, τ ]):

||α||22 =
∫ τ

0
α2(t)dt and ||α||∞,τ = sup

t∈[0,τ ]
|α(t)|.

For a vector b ∈ Rp, we also introduce the `1-norm |b|1 =
∑p
j=1 |bj |.
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Assumption 2.2.

(i) There exists a positive constant B such that

|Zj | ≤ B, ∀j ∈ {1, ..., p}.

In the following, we denote A = [−B,B]p.

(ii) The vector of covariates Z admit a p.d.f. fZ such that supA |fZ | ≤ f1 < +∞.

(iii) There exists f0 > 0, such that ∀(t, z) ∈ [0, τ ]×A,

E[Y (t)|Z = z]fZ(z) ≥ f0.

(iv) For all t ∈ [0, τ ], α0(t) ≤ ||α0||∞,τ < +∞.

Remark 2.3. Let say a few word on these assumptions starting by noting that these four assumptions
are quite classic and reasonnable. To be more specific, Assumption 2.2.(i), is very common to establish
oracle inequalities of Lasso estimators in various frameworks. In particular, in the Cox model, see
e.g. Huang et al. (2013) and Bradic and Song (2012) for the statement of non asymptotic oracle
inequalities

In the specific case of right censoring, Assumption 2.2.(iii) is automatically verified. Indeed, for
T the survival time and C the censoring time, we can write

E(Y (t)|Z = z) = E(1{T∧C≤t}|Z = z) = (1− FT |Z(t))(1−GC|Z(t−)),

where FT |Z and GC|Z are the cumulative distribution functions of T |Z and C|Z respectively. It is
known (see Andersen et al. (1993)) that the Kaplan-Meier estimator is consistent only on intervals
of the form [0, τ ], where τ ≤ sup{t ≥ 0, (1 − FT |Z(t))(1 − GC|Z(t)) > 0}. Hence when fZ is bounded
from below on A, there exists f0 > 0, such that

∀(t, z) ∈ [0, τ ]×A, E[Y (t)|Z = z]fZ(z) ≥ f0.

Assumption 2.2.(iii) is required in order to compare the natural norm of the baseline function
induced by our contrast to the standard L2-norm (see Proposition 6.1).

3 Estimation procedure
We now describe our two-steps estimation procedure, starting by recalling the Lasso estimation of β0
and then giving a bound of its prediction risk. Then, we describe the contrast and the model selection
procedure for the estimation of the baseline function.

3.1 Preliminary estimation of β0: procedure and results

The Lasso estimator β̂ of the regression parameter β0, introduced in Tibshirani (1997), is defined by

β̂ = arg min
β∈Rp

{−l∗n(β) + Γn|β|1}, (3)

5



where Γn is a positive regularization parameter to be suitable chosen, |β|1 =
∑p
j=1 |βj | and l∗n is the

Cox partial log-likelihood defined by,

l∗n(β) = 1
n

n∑
i=1

∫ τ

0
log eβTZi

Sn(t,β)dNi(t), where Sn(t,β) = 1
n

n∑
i=1

eβTZiYi(t) ∀t ≥ 0. (4)

The risk bounds for the estimator of α0 will naturally involve the risk |β̂ − β0|1, that have to be
at least bounded. Thus, we rather consider the following procedure

β̂ = arg min
β∈B(0,R1)

{−l∗n(β) + pen(β)}, with pen(β) = Γn|β|1, (5)

where B(0, R1) is the ball defined by

B(0, R1) = {b ∈ Rp : |b|1 ≤ R1}, with R1 > 0.

Consider the following assumption:

Assumption 3.1. We assume that |β0|1 < R2 < +∞.

We denote R = max(R1, R2), so that

|β̂ − β0|1 ≤ 2R a.s. (6)

Such condition has already been considered by van de Geer (2008) or Kong and Nan (2012). Roughly
speaking, it means that we can restrict our attention to a ball, possibly very large, in a neighborhood
of β0 for finding a good estimator of β0.

As mentionned above, our risk bounds for the estimator of α0 depend on the risk |β̂ − β0|1. Such
bounds on this risk already exist. In particular, in their Theorem 3.1, Huang et al. (2013) state a non
asymptotic inequality for |β̂−β0|1 in the specific case of bounded counting processes. We consider here
more general processes, possibly unbounded. In the following proposition, we provide a generalization
of the results established by Huang et al. (2013) to the case of unbounded counting processes. We
refer to Appendix A for a proof of Proposition 3.2.

Proposition 3.2. Let k > 0, c > 0 and s := Card{j ∈ {1, ..., p} : β0j 6= 0} be the sparsity index of
β0. Assume that ||α0||∞,τ < ∞. Then, under Assumptions 3.1 and (i), with probability larger than
1− cn−k, we have

|β̂ − β0|1 ≤ C(s)

√
log(pnk)

n
(7)

where C(s) > 0 is a constant depending on the sparsity index s.

As mentioned previously, this proposition is crucial to establish a non-asymptotic oracle inequality
for the baseline function. In the rest of the paper, we consider that β̂ satisfies Inequality (7).

Assumption 3.3. We assume that

lim
n→∞

C(s) log(np)
n

= 0.

This assumption is clearly reasonable: when p is smaller than n or of the same order, this as-
sumption is automatically fulfilled. It is not satisfied when p becomes too high compared to n. This
case corresponds to the now well known case of ultra-high dimension framework. In this specific case,
recent lower bounds in additive regression models typically say that the estimation of paramater is
mostly impossible (see for example Verzelen (2012)).
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3.2 Estimation of α0

We now come to the estimation of the baseline function α0 via a model selection procedure. As usual,
such a procedure requires an empirical estimation criterion, a collection of models and a suitable
penalty function, all being presented in the following.

3.2.1 Definition of the estimation criterion

We estimate the baseline function α0 using a least-squares criterion. More precisely, based on the data
(Zi, Ni(t), Yi(t), i = 1, ..., n, 0 ≤ t ≤ τ) and for a fixed β, we consider the empirical least-squares
type given for a function α ∈ (L2 ∩ L∞)([0, τ ]) by

Cn(α,β) = − 2
n

n∑
i=1

∫ τ

0
α(t)dNi(t) + 1

n

n∑
i=1

∫ τ

0
α2(t)eβTZiYi(t)dt. (8)

The use of such least-square empirical criterion in survival analysis is not so usual as for the additive
regression model. Nevertheless, few recent studies have developped such very useful as strategies.
Among them one can cite Reynaud-Bouret (2006) or Comte et al. (2011).

Let us define a deterministic scalar product and its associated deterministic norm for α1, α2 and
α functions in (L2 ∩ L∞)([0, τ ]):

〈α1, α2〉det(β) =
∫ τ

0
α1(t)α2(t)E[eβTZY (t)]dt,

||α||2det(β) =
∫ τ

0
α2(t)E[eβTZY (t)]dt. (9)

Using the Doob-Meyer decomposition Ni = Mi + Λi and according to the multiplicative Aalen
model (2), we get:

E[Cn(α,β0)] = ||α||2det − 2〈α, α0〉det = ||α− α0||2det − ||α0||2det,

which is minimum when α = α0. Hence, minimizing Cn(.,β0) is a relevant strategy to estimate α0.

3.2.2 Model selection

We now describe the model selection procedure in our context, introducing first the collection of
models.

Collections of models. LetMn be a set of indices and {Sm,m ∈Mn} be a collection of models:

Sm = {α : α =
∑
j∈Jm

amj ϕ
m
j , a

m
j ∈ R},

where (ϕmj )j∈Jm is an orthonormal basis of (L2 ∩ L∞)([0, τ ]) for the usual L2(P )- norm. We denote
Dm the cardinality of Sm, i.e. |Jm| = Dm.

Sequence of estimators. Let us consider β̂ the Lasso estimator of β0 defined by (5). For each
m ∈Mn, we define the estimator

α̂β̂m = arg min
α∈Sm

{Cn(α, β̂)}. (10)

7



Model selection. The relevant space is automatically selected by using following penalized criterion

m̂β̂ = arg min
m∈Mn

{Cn(α̂β̂m, β̂) + pen(m)}, (11)

where pen :Mn → R will be defined later.

Final estimator. The final estimator of α0 is then α̂β̂
m̂β̂

.

Let us say few words on the optimisation problem. Denote by Gβ̂
m the random Gram matrix

Gβ̂
m =

( 1
n

n∑
i=1

∫ τ

0
ϕj(t)ϕk(t)eβ̂

TZiYi(t)dt
)

(j,k)∈J2
m

. (12)

By definition, the estimator α̂β̂m is the solution of the equation Gβ̂
mA

β̂
m = Γm, where

Aβ̂m = (âβ̂j )j∈Jm and Γm =
( 1
n

n∑
i=1

∫ τ

0
ϕj(t)dNi(t)

)
j∈Jm

. (13)

The Gram matrix Gβ̂
m may not be invertible in some cases. Hence we consider the set

Ĥβ̂m =
{

min Sp(Gβ̂
m) ≥ max

(
f̂0e−B|β0|1e−B|β0−β̂|1

6 ,
1√
n

)}
, (14)

where Sp(M) denotes the spectrum of matrix M and f̂0 satisfies the following assumption:

Assumption 3.4. There exist a preliminary estimator f̂0 of f0 and two positive constants C0 > 0,
n0 > 0 such that

P(|f̂0 − f0| > f0/2) ≤ C0/n
6 for any n ≥ n0.

From Assumptions 3.1, on the set Ĥβ̂m, the matrixGβ̂
m is invertible and α̂β̂m is thus uniquely defined

as

α̂β̂m =
{

arg minα∈Sm{Cn(α, β̂)} on Ĥβ̂m,
0 on (Ĥβ̂m)c.

3.2.3 Assumptions and examples of the models

The following assumptions on the models {Sm : m ∈ Mn} are usual in model selection procedures.
They are verified by the spaces spanned by usual bases: trigonometric basis, regular piecewise polyno-
mial basis, regular compactly supported wavelet basis and histogram basis. We refer to Barron et al.
(1999) and Brunel and Comte (2005) for other examples and further discussions.

Assumption 3.5.

(i) For all m ∈Mn, we assume that

Dm ≤
√
n

logn.
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(ii) For all m ∈Mn, there exists φ > 0 such that for all α in Sm,

sup
t∈[0,τ ]

|α(t)|2 ≤ φDm

∫ τ

0
α2(t)dt.

(iii) The models are nested within each other: Dm1 ≤ Dm2 ⇒ Sm1 ⊂ Sm2. We denote by Sn the
global nesting space in the collection and by Dn its dimension.

Remark 3.6. Assumption 3.5.(i) ensures that the sizes Dm of the models are not too large compared
with the number of observations n. This assumption seems reasonable if we remember that Dm is the
number of coefficients to be estimated: if this number is too large compared to the size of the panel,
we cannot expect to obtain a relevant estimator. Assumption 3.5.(ii) implies a useful connection
between the standard L2-norm and the infinite norm. Assumption 3.5.(iii) ensures that ∀m,m′ ∈Mn,
Sm + Sm′ ⊂ Sn. Thanks to this assumption, one does not have to browse through all models for the
model selection, which reduces the algorithmic complexity of the procedure. In addition, we have from
Assumption 3.5.(i) that Dn ≤

√
n/logn.

4 Non-asymptotic oracle inequalities
We now are in a position to state our main theorem: a non-asymptotic oracle inequality for the
estimator α̂β̂

m̂β̂
of the baseline function in the Cox model.

Theorem 4.1. Let Assumptions 2.2.(i)-(iv), Assumptions 3.1, Assumption 3.3, Assumption 3.4 and
Assumptions 3.5.(i)-(iii) hold. Let αβ0

m be the projection of α0 on Sm with respect to the deterministic
scalar product when β0 is known:

αβ0
m = arg min

α∈Sm
E[Cn(α,β0)] = arg min

α∈Sm
||α− α0||2det. (15)

Let α̂β̂
m̂β̂

be defined by (10) and (11) with

pen(m) := K0(1 + ||α0||∞,τ )Dm

n
, (16)

where K0 is a numerical constant. Then, for any n ≥ n0, with n0 a constant defined in Assumption
3.4,

E[||α̂β̂
m̂β̂
− α0||2det] ≤ κ0 inf

m∈Mn

{||α0 − αβ0
m ||2det + 2 pen(m)}+ C1

n
+ C2C(s) log(np)

n
, (17)

where κ0 is a numerical constant, C1 and C2 are constants depending on τ , φ, ||α0||∞,τ , f0, E[eβT0 Z ],
E[e2βT0 Z ], E[e4βT0 Z ], B, |β0|1, the sparsity index s of β0 and κb a constant from the Bürkholder In-
equality (see Theorem 6.9) and C(s) the constant depending on the sparsity index of β0 in Proposition
3.2.

Inequality (17) provides the first non-asymptotic oracle inequality for an estimator of the baseline
function. This inequality warrants the performances of our estimator α̂β̂

m̂β̂
. We refer to Subsection

6.2.1 for precisions about C1 and C2. In Inequality (17), the risk is bounded by the sum of four terms.
The third term of order 1/n is negligible compared to the others. The first two terms are respec-

tively the bias and the variance terms. The bias term, ||α0−αβ0
m ||2det, corresponds to the approximation
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error and decreases with the dimension Dm of the model Sm. It depends on the regularity of the true
function, which is unknown: the more regular α0 is, the smaller the bias is. The variance term pen(m)
quantifies the estimation error and in contrary to the bias term, increases with Dm. It is of order
Dm/n, which corresponds to the order of the variance term on one model. These three first terms do
not involve quantities related to the estimation error of the Lasso estimator of β0.

The last term precisely comes from the non-asymptotic control of |β̂ − β0|1 given by Proposition
3.2. Indeed, we can rewrite Inequality (17) before using the bound of control (7):

E[||α̂β̂
m̂β̂
− α0||2det] ≤ κ0 inf

m∈Mn

{||α0 − αβ0
m ||2det + 2 pen(m)}+ C1

n
+ C2E[|β̂ − β0|21].

This inequality makes clearer the role of the first step of the procedure in the control of the estimator
α̂β̂
m̂β̂

of the baseline function. The bound obtained for this control is of order log(np)/n, which explains
the order of the fourth term. This term quantifies the influence of the high dimension on the estimation
of the baseline hazard function. For small p, we obtain the expected rate of convergence in the case of a
purely non-parametric estimation, but when is larger than n, the rate of convergence of the inequality
is degraded. This is the price to pay for dealing with covariates in high dimension.

Corollary 4.2. Assume that α0 belongs to the Besov space Bγ2,∞([0, τ ]), with smoothness γ. Then,
under the assumptions of Theorem 4.1,

E[||α̂β̂
m̂β̂
− α0||22] ≤ C̃n−

2γ
2γ+1 + C2C(s) log(np)

n
,

where C̃ and C2 are constants depending on τ , φ, ||α0||∞,τ , f0, E[eβT0 Z ], E[e2βT0 Z ], B, |β0|1, the
sparsity index s of β0 and κb a constant from the Bürkholder Inequality (see Theorem 6.9) and C(s)
the constant depending on the sparsity index of β0 from Proposition 3.2.

From Reynaud-Bouret (2006), we know that, for an intensity function without covariates in a
Besov space with smoothness parameter γ, the minimax rate is n−2γ/(2γ+1). We infer that this would
also be the optimal rate in our case when the term log(np)/n is negligible, namely when p < n.
However, when the high-dimension p � n is reached, the remaining term log(np)/n is not negligible
anymore and there is a loss in the rate of convergence, which comes from the difficulty to estimate β0.

5 Applications: simulation study

The aim of this section is to illustrate the behavior of the penalized contrast estimator α̂β̂
m̂β̂

of the
baseline function in the case of right censoring and to compare it with the usual kernel estimator with
a bandwidth selected by cross-validation introduced by Ramlau-Hansen (1983b).

5.1 Simulated data

Let consider the Cox model (1) in the case of right censoring. We consider a cohort of size n and p
covariates. In the simulation study, several choices of n and p have been considered. The sample size
n takes the values n = 200 and n = 500 and p varies between p =

√
n, being 15 and 22 respectively

and p = n, referred to as the high-dimension case.
The true regression parameter β0 is chosen as a vector of dimension p, defined by

β0 = (0.1, 0.3, 0.5, 0, ..., 0)T ∈ Rp,

10
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Figure 1 – Plots of the baseline hazard function for different parameters of a Weibull distribution
W(a, λ)

for various p ≥ 3 and for each n and p, the design matrix Z = (Zi,j)1≤i≤n,1≤j≤p is simulated inde-
pendently from a uniform distribution on [−1, 1]. We consider survival times Ti, i = 1, ..., n that are
distributed according to a Weibull distribution W(a, λ), namely the associated baseline function is of
the form α0(t) = aλata−1. We simulate three Weibull distribution W(0.5, 1), W(1, 1), W(3, 4) (see
Figure 1). We consider a rate of censoring of 20% and the censoring times Ci, for i = 1, ..., n, are
simulated independently from the survival times via an exponential distribution E(1/γE[T1]), where
γ = 4.5 is adjusted to the rate of censorship. The time τ of the end of the study is taken as the
quantile at 90% of (Ti ∧Ci)i=1,...,n. For i = 1, ..., n, we compute the observed times Xi = min(Ti, C̃i),
where C̃i = Ci ∧ τ and the censoring indicators δi = 1Ti≤Ci . The definition of C̃i ensures that there
exist some i ∈ {1, ..., n} for which Xi ≥ τ , so that all estimators are defined on the interval [0, τ ] and
it prevents from certain edge effect.

Each sample (Zi, Ti, Ci, Xi, δi, i = 1, ..., n) is repeated Ne = 100 times.

5.2 Estimation procedures

We implement α̂β̂m in a histogram basis defined, for j = 1, ..., 2m, by

ϕmj (t) = 1√
τ

2m/21[(j−1)τ/2m,jτ/2m[(t),

In this case, the cardinal of Sm is Dm = 2m and Assumption 3.5.(ii) is satisfied for φ = 1/τ . We take
m = 0, ..., blog(n/ log(n))/ log(2))c, so that Assumption 3.5.(i) is fulfilled. In this basis, the estimator
is being written by

α̂β̂m(t) =
∑
j∈Jm

âβ̂j ϕ
m
j (t), ∀t ∈ [0, τ ], (18)

11



where

âβ̂j = τ

2m
1

1
n

n∑
i=1

eβ̂TZi
((

min
(
Xi,

jτ

2m
)
− (j − 1)τ

2m
)
∨ 0
) 1
n

n∑
i=1

δi
2m/2√
τ
1[

(j−1)τ
2m , jτ2m

)(Xi).

The final estimator α̂β̂
m̂β̂

is obtained from the implementation of the selection model procedure (10),

replacing in the penalty term the unknown quantity ||α0||∞,τ by ||α̂β̂max(m)||∞,τ , an estimator of α0
computed on the arbitrary larger space Smax(m).

We want to compare the performances of the estimator α̂β̂
m̂β̂

to those of the usual kernel estimator
with a bandwidth selected by cross-validation introduced by Ramlau-Hansen (1983b), that we have
also implemented. More precisely the usual kernel estimator is defined by

α̂β̂
ĥβ̂CV

(t) = 1

ĥβ̂CV

n∑
i=1

δi∑n
j=1 eβ̂TZj1{Xj≥Xi}

K

 t−Xi

ĥβ̂CV

 , (19)

where K(u) = 0.75(1 − u2)1{|u|≤1} is the Epanechnikov kernel and the bandwidth ĥβ̂CV has been
selected by cross-validation:

ĥβ̂CV = arg min
h

{
E
∫ τ

0
(α̂β̂h(t))2dt− 2

∑
i 6=j

1
h
K
(Xi −Xj

h

)∆N(Xi)
Ȳ (Xi)

∆N(Xj)
Ȳ (Xj)

}
,

where Ȳ =
∑n
i=1 1{Xi≥t}.

Both estimators of the baseline hazard function are defined from the Lasso estimator β̂ of the
regression parameter defined by (3).

The performances of these two estimators are evaluated via a random Mean Integrated Squared
Error (MISErand) adapted to the Cox model and defined by MISErand(α, β̂) = E[ISErand(α, β̂)],
where the expectation is taken on (Ti, Ci,Zi) and

ISErand(α, β̂) = 1
n

n∑
i=1

∫ Xi

0
(α(t)− α0(t))2eβ̂TZidt, (20)

We obtain an estimation of the MISErand by taking the empirical mean for Ne = 100 replications.

In Table 1, we give the random MISE of the penalized contrast estimator and of the kernel esti-
mator with a bandwidth selected by cross-validation for different distributions of the survival times.

First, as expected, the random MISEs are smaller for a large n and a small p. Then, we observe that
the penalized contrast estimator performs better than the kernel estimator for the Weibull distributions
W(0.5, 2) and W(3, 4). Note that the random MISEs are very high for this last distribution. This can
easily be explained from the fact that the baseline hazard function associated to a W(3, 4) has the
most complicated form since it increases steeply (see Figure 1). Lastly, for the distribution W(1.5, 1),
the random MISEs are smaller in the case of the kernel estimator with a bandwidth selected by
cross-validation than in the case of the penalized contrast estimator.
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hhhhhhhhhhhhhhhhhDimensions
Distributions W(1.5, 1) W(0.5, 2) W(3, 4)

n = 200 p = 15 0.072 0.021 0.626 1.09 5.26 8.48
p = 200 0.071 0.020 0.613 1.09 5.30 8.33

n = 500 p = 22 0.055 0.009 0.401 1.06 5.24 7.48
p = 500 0.059 0.008 0.402 1.06 5.25 8.10

Table 1 – Random empirical MISE for the penalized contrast estimator in a histogram basis (first col-
umn for each distribution) and for the kernel estimator with a bandwidth selected by cross-validation
(second column for each distribution), with a Lasso estimator of the regression parameter, for three
different Weibull distributions of the survival times.

6 Proofs

6.1 Technical results

In this section, we introduce some propositions and lemmas that are necessary to prove the theorems.
Their proofs are postponed to Subsection 6.3.

Let us first introduce the random norm revealed from the contrast (8) and associated to the
deterministic norm defined by (9), and its associated scalar product: for α, α1 and α2 functions in
(L2 ∩ L∞)([0, τ ]) and β ∈ Rp fixed,

||α||2rand(β) = 1
n

n∑
i=1

∫ τ

0
α2(t)eβTZiYi(t)dt, (21)

〈α1, α2〉rand(β) = 1
n

n∑
i=1

∫ τ

0
α1(t)α2(t)eβTZiYi(t)dt,

Subsequently, to relieve the notations, we denote ||.||rand := ||.||rand(β0) and the same holds for the
associated scalar product. We state a key relation between 〈., .〉rand(β) and Cn(.,β). By definition, for
all m ∈Mn and β ∈ Rp,

Cn(α̂β
m̂β
,β) + pen(m̂β) ≤ Cn(α̂βm,β) + pen(m) ≤ Cn(αβ0

m ,β) + pen(m), (22)

where m̂β = arg minm∈Mn{Cn(α̂βm,β) + pen(m)}. Now, we write that

Cn(α̂β
m̂β
,β)− Cn(αβ0

m ,β)

=− 2
n

n∑
i=1

∫ τ

0
(α̂β

m̂β
− αβ0

m )(t)dNi(t) + 1
n

n∑
i=1

∫ τ

0
(α̂β

m̂β
(t)2 − αβ0

m (t)2)eβTZiYi(t)dt.

Using the Doob-Meyer decomposition, we derive that

Cn(α̂β
m̂β
,β)− Cn(αβ0

m ,β)

=− 2〈α̂β
m̂β
− αβ0

m , α0〉rand + ||α̂β
m̂β
||2rand(β) − ||α

β0
m ||2rand(β) − 2νn(α̂β

m̂β
− αβ0

m ),

where νn(α) is defined by

νn(α) = 1
n

n∑
i=1

∫ τ

0
α(t)dMi(t). (23)
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It follows that

Cn(α̂β
m̂β
,β)− Cn(αβ0

m ,β) = ||α̂β
m̂β
− αβ0

m ||2rand(β) − 2νn(α̂β
m̂β
− αβ0

m )

+ 2〈α̂β
m̂β
− αβ0

m , αβ0
m 〉rand(β) − 2〈α̂β

m̂β
− αβ0

m , α0〉rand. (24)

Let us now introduce the following events :

∆1 =
{
α ∈ Sn :

∣∣∣∣∣ ||α||2rand||α||2det
− 1

∣∣∣∣∣ ≤ 1
2

}
, and Ω =

{∣∣∣∣∣ f̂0
f0
− 1

∣∣∣∣∣ ≤ 1
2

}
(25)

∆2 =

α ∈ Sn :

∣∣∣∣∣∣
||α||2

rand(β̂)
||α||2rand

− 1

∣∣∣∣∣∣ ≤ 1
2

 . (26)

On the sets ∆1 and ∆2 we have a relation between the random ||.||rand and the deterministic ||.||det
norms and between the random norms ||.||rand and ||.||rand(β̂) respectively. The following proposition
state a relation between the deterministic norm (9) and the standard L2-norm:

Proposition 6.1 (Connections between the norms). From Assumptions 2.2.(i)-(iii), we deduce the
following connection between the deterministic norm and the standard L2-norm:

f0e−B|β0|1 ||α||22 ≤ ||α||2det ≤ E[eβT0 Z ]||α||22 ≤ eB|β0|1 ||α||22.

The proof of this proposition is immediate using the fact that from Assumption 2.2.(ii), we can
rewrite the deterministic norm as

||α||2det =
∫ τ

0

∫
A
α2(t)eβT0 zE[Y (t)|Z = z]fZ(z)dzdt.

6.1.1 Results used in the proofs of Theorem 4.1

Recall that for all β ∈ Rp,

Ĥβm =
{

min Sp(Gβ
m) ≥ max

(
f̂0e−B|β0|1e−B|β0−β|1

6 ,
1√
n

)}
.

The following lemma ensures the existence of the estimators α̂β̂
m̂β̂

on ∆1 ∩∆2 ∩ Ω.

Lemma 6.2. Under Assumptions 2.2.(i)-(iv), Assumptions 3.1 and Assumptions 3.5.(i)-(iii), for
n ≥ 16/(f0e−3BR)2, the following embedding holds:

∆1 ∩∆2 ∩ Ω ⊂ Ĥβ̂ ∩ Ω, where Ĥβ̂ := ∩
m∈Mn

Ĥβ̂m.

From this lemma, for all m ∈Mn, the matrix Gβ̂
m is invertible on ∆1 ∩∆2 ∩ Ω, and thus the

estimator of α0 is well defined. Proof 6.2 are available in Subsection 6.3.1.
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The following proposition bounds the quadratic difference between α̂β̂
m̂β̂

and αβ0
m for m ∈Mn, on

the complements of
ℵk = ∆1 ∩∆2 ∩ Ω ∩ Ωk

H ,

where Ωk
H , (the indice H is for "Huang", since the set has already been defined by Huang et al. (2013)),

is defined for k > 0 by

Ωk
H =

|β̂ − β0|1 ≤ C(s)

√
log(pnk)

n

 , (27)

for a constant C(s) depending on the sparsity index of β0. From Proposition 3.2, P(Ωk
H) ≥ 1− cn−k

for a constant c > 0. Now, let us state the two following propositions.

Proposition 6.3. Under Assumptions 2.2.(i)-(iv), Assumptions 3.1 and Assumptions 3.5.(i)-(iii),

E[||α̂β̂
m̂β̂
− αβ0

m ||2det1ℵck ] ≤ c̃1/n, (28)

where c̃1 is a constant depending on τ , φ, ||α0||∞,τ , f0, E[eβT0 Z ], E[e2βT0 Z ], B, |β0|1, the sparsity index
s of β0 and κb a constant that comes from the Bürkholder Inequality (see Theorem 6.9).

We refer to Subsection 6.3.2 for the proof of Proposition 6.3. This propositions are directly used in
the proof of Theorems 4.1 in Subsection 6.2.

Usually, in model selection (see for instance Massart (2007)), the penalty is obtained by using the
so-called Talagrand’s deviation inequality for the maximum of empirical processes. In the empirical
process (23), the martingales Mi, i = 1, ..., n, are unbounded, Thus, we cannot directly use the
Talagrand’s inequality. We consider the following proposition proved in Comte et al. (2011). To
obtain an uniform deviation of νn(.), Comte et al. (2011) have used tools from van de Geer (1995)
to establish Bennett and Bernstein type inequalities and a L2(det) − L∞ generic chaining type of
technique (see Talagrand (2005) and Baraud (2010)).

Proposition 6.4. Let m,m′ ∈Mn. Define

Bdetm,m′(0, 1) = {α ∈ Sm + S′m : ||α||det ≤ 1}. (29)

Under the assumptions of Theorem 4.1, there exists κ > 0 such that for

p(m,m′) = κ

K0
(pen(m) + pen(m′)), (30)

where the constant K0 and pen(m) are defined in (16), then∑
m′∈Mn

E
((

sup
α∈Bdet

m,m′ (0,1)
ν2
n(α)− p(m,m′)

)
+
1∆1

)
≤ C3

n

for n large enough, where C3 is a constant depending on f0, E[eβT0 Z ], B, |β0|1, ||α0||∞,τ and the choice
of the basis.

These propositions are applied to prove Theorem 4.1. We admit the proof of this proposition and
refer to Comte et al. (2011) for a detailed proof of this result.
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We need Proposition 6.5 to prove Theorem 4.1: the empirical centered process ηn(α, αβ0
m ), defined

by

ηn(α, αβ0
m ) = 1

n

n∑
i=1

(
Ui(α, αβ0

m )− E[Ui(α, αβ0
m )]

)
,

where
Ui(α, αβ0

m ) =
(∫ τ

0
α(t)αβ0

m (t)eβT0 ZiYi(t)dt
)2
.

appears in the proof of Theorem 4.1, when we control the difference between the scalar products
〈., .〉rand −〈., .〉rand(β̂) (see Subsection 6.2.1). Proposition 6.5 allows to control this process.

Proposition 6.5. Let introduce the ball Bdetn (0, 1) ⊂ Sn defined by

Bdetn (0, 1) = {α ∈ Sn : ||α||det ≤ 1}. (31)

Under Assumptions 2.2.(i)-(iv) and Assumption 3.1, we have

E
[

sup
α∈Bdetn (0,1)

ηn(α, αβ0
m )2

]
≤ 1
n

E[e4βT0 Z ]||αβ0
m ||42

(e−B|β0|1f0)2 .

Proposition 6.5 is proved in Subsection 6.3.3.

6.1.2 Technical lemmas for the proofs of Proposition ?? and 6.3

In order to prove Proposition 6.3, we need three lemmas:

Lemma 6.6. Under Assumptions 2.2.(i)-(iv), Assumptions 3.1 and Assumptions 3.5.(i)-(iii), we have

E[||α̂β̂
m̂β̂
||42] ≤ Cbn4,

where Cb is constant depending on ||α0||∞,τ , τ , E[eβT0 Z ] and E[e2βT0 Z ], κb, the constant of the Bürkholder
Inequality (see Theorem 6.9) and on the choice of the basis.

Lemma 6.7. Under Assumptions 2.2.(i)-(iv) and Assumptions 3.5.(i)-(iii), we have

P(∆c
1) ≤ C

(∆1)
k

nk
, ∀k ≥ 1,

where C(∆1)
k is a constant depending on f0, B and |β0|1.

Lemma 6.8. Under Assumptions 2.2.(i)-(iv), Assumptions 3.1 and Assumption 3.3, we have for n
large enough,

P(∆c
2) ≤ C

(∆2)
k

nk
, ∀k ≥ 1,

where the constant C(∆2)
k depends on τ , ||α0||∞,τ and E[eβT0 Z ].

These three lemmas are required to prove Proposition 6.3. There are proved in Subsection 6.3.
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6.1.3 A classical inequality: the Bürkholder Inequality

The last technical result is a Bürkholder Inequality that gives a norm relation between a martingale
and its optional process. We refer to Liptser and Shiryayev (1989) p.75, for the proof of this result.

Theorem 6.9 (Bürkholder Inequality). If M = (Mt,Ft)t≥0 is a martingale, then there are universal
constants γb and κb (independent of M) such that for every t ≥ 0

γb||
√

[M ]t||2 ≤ ||Mt||2 ≤ κb||
√

[M ]t||2,

where [M ]t is the quadratic variation of Mt.

This theorem is used to prove Lemma 6.6 and in the oracle inequalities of Theorem 4.1, the
constants depend on κb.

6.2 Proofs of the main theorems

6.2.1 Proof of Theorem 4.1

In the following, we consider the sets ∆1, ∆2 and Ω defined by (25) and (26) and the set Ωk
H defined

by (27). For sake of simplicity in the notations, we denote ℵk the intersection between the four sets:
ℵk = ∆1 ∩∆2 ∩ Ω ∩ Ωk

H . We have the following decomposition:

E[||α̂β̂
m̂β̂
− α0||2det] ≤ 2||α0 − αβ0

m ||2det + 2E[||α̂β̂
m̂β̂
− αβ0

m ||2det1ℵk ] + 2E[||α̂β̂
m̂β̂
− αβ0

m ||2det1ℵck ].

The first term is the usual bias term. From Proposition 6.3, we deduce that the last term is bounded
by c̃1/n. We now focus on the term E[||α̂β̂

m̂β̂
− αβ0

m ||2det1ℵk ]. From Lemma 6.2, for all m ∈ Mn, the
matrices Gβ̂

m are invertible on ∆1∩∆2∩Ω∩Ωk
H as soon as n ≥ 16/(f0e−3BR)2 and thus the estimator

α̂β̂
m̂β̂

of α0 is well defined. From (22) and (24), with β = β̂, we have for all m ∈Mn,

||α̂β̂
m̂β̂
− αβ0

m ||2rand(β̂) ≤ 2νn(α̂β̂
m̂β̂
− αβ0

m ) + 2〈α̂β̂
m̂β̂
− αβ0

m , α0 − αβ0
m 〉rand

+ pen(m)− pen(m̂β̂) + 2〈α̂β̂
m̂β̂
− αβ0

m , αβ0
m 〉rand − 2〈α̂β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand(β̂),

where the empirical process νn(.) is defined by Equation (23) and the random norm by (21). For
Bdetm,m′(0, 1) defined by (29), using the classical inequality 2xy ≤ bx2 + y2/b with b > 0, we obtain

||α̂β̂
m̂β̂
− αβ0

m ||2rand(β̂) ≤
1
16 ||α̂

β̂

m̂β̂
− αβ0

m ||2rand + 16||α0 − αβ0
m ||2rand + pen(m)− pen(m̂β̂)

+ 1
16 ||α̂

β̂

m̂β̂
− αβ0

m ||2det + 16 sup
α∈Bdet

m,m̂β̂
(0,1)

ν2
n(α)

+ 2
(
〈α̂β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand − 〈α̂

β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand(β̂)

)
.
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Consequently, using the relations between the random norms ||.||rand(β̂) and ||.||rand and between the
random norm ||.||rand and the deterministic norm ||.||det on ℵk, we obtain

1
4 ||α̂

β̂

m̂β̂
− αβ0

m ||2det ≤
3
32 ||α̂

β̂

m̂β̂
− αβ0

m ||2det + 16||α0 − αβ0
m ||2rand + pen(m)− pen(m̂β̂)

+ 1
16 ||α̂

β̂

m̂β̂
− αβ0

m ||2det + 16 sup
α∈Bdet

m,m̂β̂
(0,1)

ν2
n(α)

+ 2
(
〈α̂β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand − 〈α̂

β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand(β̂)

)
,

also be rewritten for p(m,m′) defined by (30) for all m′ ∈Mn, as
3
32E

[
||α̂β̂

m̂β̂
− αβ0

m ||2det1ℵk
]
≤ 16||α0 − αβ0

m ||2det + 16p(m, m̂β̂)

+ pen(m)− pen(m̂β̂) + 16
∑

m′∈Mn

E
((

sup
α∈Bdet

m,m′ (0,1)
ν2
n(α)− p(m,m′)

)
+

1ℵk

)

+ 2E
[(
〈α̂β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand − 〈α̂

β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand(β̂)

)
1ℵk

]
.

We fix K0 ≥ 16κ such that 16p(m,m′) ≤ pen(m) + pen(m′), for all m,m′ inMn, so that
3
32E

[
||α̂β̂

m̂β̂
− αβ0

m ||2det1ℵk
]
≤ 16||α0 − αβ0

m ||2det + 2 pen(m)

+ 16
∑

m′∈Mn

E
((

sup
α∈Bdet

m,m′ (0,1)
ν2
n(α)− p(m,m′)

)
+
1ℵk

)
+ 2E

[(
〈α̂β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand − 〈α̂

β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand(β̂)

)
1ℵk

]
,

that is
3
32E[||α̂β̂

m̂β̂
− αβ0

m ||2det1ℵk ] ≤ 16||α0 − αβ0
m ||2det + 2 pen(m) +A(m) + E[B(m, m̂β̂)1ℵk ] (32)

where

A(m) = 16
∑

m′∈Mn

E
((

sup
α∈Bdet

m,m′ (0,1)
ν2
n(α)− p(m,m′)

)
+

1ℵk

)
, (33)

B(m, m̂β̂) = 2
(
〈α̂β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand − 〈α̂

β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand(β̂)

)
. (34)

It remains to study the terms A(m) and B(m, m̂β̂).

Study of (33). According to Proposition 6.4, for n large enough

∑
m′∈Mn

E
((

sup
α∈Bdet

m,m′ (0,1)
ν2
n(α)− p(m,m′)

)
+

1ℵk

)
≤ C3

n
,

where p(m,m′) is defined by (30) and C3 is a constant depending on f0, |β0|1, B, E[eβT0 Z ], ||α0||∞,τ
and the choice of the basis. Hence, for C ′3 = 16C3, we conclude that

A(m) ≤ C ′3
n
. (35)
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Study of (34). Using again the classical inequality 2xy ≤ bx2 + y2/b with b > 0, we obtain

〈α̂β̂
m̂β̂
− αβ0

m , αβ0
m 〉rand − 〈α̂

β̂

m̂β̂
− αβ0

m , αβ0
m 〉rand(β̂) ≤

1
32 ||α̂

β̂

m̂β̂
− αβ0

m ||2det

+ 32 sup
α∈Bdet

m,m̂β̂
(0,1)

( 1
n

n∑
i=1

∫ τ

0
α(t)αβ0

m (t)(eβT0 Zi − eβ̂TZi)Yi(t)dt
)2
. (36)

Now, from Assumption 3.5.(iii) and by definition (31) of Bdetn (0, 1), we write that

sup
α∈Bdet

m,m̂β̂
(0,1)

(
1
n

n∑
i=1

∫ τ

0
α(t)αβ0

m (t)(eβT0 Zi − eβ̂TZi)Yi(t)dt
)2

is less than

sup
α∈Bdetn (0,1)

(
1
n

n∑
i=1

∫ τ

0
α(t)αβ0

m (t)eβT0 Zi(1− eβ̂TZi−βT0 Zi)Yi(t)dt
)2

.

We have ∣∣∣∣∣ 1n
n∑
i=1

∫ τ

0
α(t)αβ0

m (t)eβT0 Zi(1− eβ̂TZi−βT0 Zi)Yi(t)dt
∣∣∣∣∣

≤ 1
n

n∑
i=1

∣∣∣1− eβ̂TZi−βT0 Zi
∣∣∣∣∣∣∣∣
∫ τ

0
α(t)αβ0

m (t)eβT0 ZiYi(t)dt
∣∣∣∣∣.

Using the fact that |ex − ey| ≤ |x − y|ex∨y for all (x, y) ∈ R2 and applying Assumptions 2.2.(i) and
Assumptions 3.1, we obtain that∣∣∣∣∣ 1n

n∑
i=1

∫ τ

0
α(t)αβ0

m (t)eβT0 Zi(1− eβ̂TZi−βT0 Zi)Yi(t)dt
∣∣∣∣∣

≤ 1
n

n∑
i=1
|β̂TZi − βT0Zi|e

|β̂TZi−βT0 Zi|
∣∣∣∣∣
∫ τ

0
α(t)αβ0

m (t)eβT0 ZiYi(t)dt
∣∣∣∣∣

≤ Be2BR|β̂ − β0|1

∣∣∣∣∣
∫ τ

0
α(t)αβ0

m (t)eβT0 ZiYi(t)dt
∣∣∣∣∣.

Now, write

sup
α∈Bdetn (0,1)

(
1
n

n∑
i=1

∫ τ

0
α(t)αβ0

m (t)eβT0 Zi(1− eβ̂TZi−βT0 Zi)Yi(t)dt
)2

≤B2e4BR|β̂ − β0|21 sup
α∈Bdetn (0,1)

1
n

n∑
i=1

(∫ τ

0
α(t)αβ0

m (t)eβT0 ZiYi(t)dt
)2

≤B2e4BR|β̂ − β0|21 sup
α∈Bdetn (0,1)

{ηn(α, αβ0
m ) +Dn(α, αβ0

m )} (37)
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where ηn(α, αβ0
m ) is defined by

ηn(α, αβ0
m ) = 1

n

n∑
i=1

[(∫ τ

0
α(t)αβ0

m (t)eβT0 ZiYi(t)dt
)2

− E
[(∫ τ

0
α(t)αβ0

m (t)eβT0 ZiYi(t)dt
)2]]

,

and

Dn(α, αβ0
m ) = E

[(∫ τ

0
α(t)αβ0

m (t)eβT0 ZY (t)dt
)2
]
.

We first claim that the term supα∈Bdetn (0,1){Dn(α, αβ0
m )} is bounded, by using that from the Cauchy-

Schwarz Inequality,

sup
α∈Bdetn (0,1)

E
[(∫ τ

0
α(t)αβ0

m (t)eβT0 ZY (t)dt
)2
]
≤ ||αβ0

m ||2det.

Thus, gathering bounds (36) and (37, we obtain that

B(m, m̂β̂) ≤ 1
16 ||α̂

β̂

m̂β̂
− αβ0

m ||2det + 64
[
B2e4BR|β̂ − β0|21

(
sup

α∈Bdetn (0,1)
{ηn(α, αβ0

m )}+ ||αβ0
m ||2det

)]
.

So, taking the expectation and applying Proposition 6.5 to control

E[supα∈Bdetn (0,1)(ηn(α, αβ0
m ))2],

we get

E[B(m, m̂β̂)1ℵk ] ≤ 1
16E[||α̂β̂

m̂β̂
− αβ0

m ||2det1ℵk ]

+64B2e4BR
{
E1/2[|β̂ − β0|411ℵk ]E1/2

[
sup

α∈Bdetn (0,1)
{η2
n(α, αβ0

m )}
]
+||αβ0

m ||2detE[|β̂ − β0|211ℵk ]
}
. (38)

Finally, combining (32), (35) and (38) we conclude that

1
16E[||α̂β̂

m̂β̂
− αβ0

m ||2det1ℵk ] ≤ 16||α0 − αβ0
m ||2det + 2 pen(m) + C ′3

n

+ 64B2e4BR||αβ0
m ||2detE[|β̂ − β0|211ℵk ]

+ 64B2e4BRE1/2[|β̂ − β0|411ℵk ]E
1/2[e4βT0 Z ]||αβ0

m ||22
e−B|β0|1f0

1√
n
.

On Ω∩Ωk
H , using that, from definition (15) and Proposition 6.1, ||αβ0

m ||2det ≤ 2||α0||det ≤ E[eβ0
TZ ]τ ||α0||∞,τ ,

we have

64B2e4BR||αβ0
m ||2detE[|β̂ − β0|211ℵk ] ≤ C(s,B,R,E[eβT0 Z ], ||α0||∞,τ , τ) log(pnk)

n
,

and that

64B2e4BRE1/2[|β̂ − β0|411ℵk ]E
1/2[e4βT0 Z ]||αβ0

m ||22
e−B|β0|1f0

1√
n

≤ C̃(s,B, |β0|1, R,E[eβT0 Z ],E[e4βT0 Z ], ||α0||∞,τ , τ, f0) log(pnk)
n
√
n

,
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where s is the sparsiy index of β0 and

C(s,B,R,E[eβT0 Z ], ||α0||∞,τ , τ) and C̃(s,B, |β0|1, R,E[eβT0 Z ],E[e4βT0 Z ], ||α0||∞,τ , τ, f0)

are constants depending on the elements in brackets. Combining the previous bounds with Proposition
6.3, we conclude that Theorem 4.1 is proved since

E[||α̂β̂
m̂β̂
− αβ0

m ||2det] ≤ κ0 inf
m∈Mn

{||α0 − αβ0
m ||2det + 2 pen(m)}+ C1

n
+ C2

log(pn)
n

,

where C1 and C2 are constants depending on the sparsity index s of β0, B, |β0|1, E[eβT0 Z ], E[e4βT0 Z ],||α0||∞,τ ,
τ , f0.

6.2.2 Proof of Corollary 4.2

From Proposition 6.1 and the proof of Corollary 1 in Comte et al. (2011), we deduce that

E[||α̂β̂
m̂β̂
− α0||22] ≤ eB|β0|1

f0
E[||α̂β̂

m̂β̂
− α0||2det] ≤ C̃1 inf

m∈Mn

{
D−2γ
m + Dm

n

}
+ C̃2(s) log(np)

n
,

and since

inf
m∈Mn

{
D−2γ
m + Dm

n

}
= n

− 2γ
2γ+1 ,

we finally get the corollary.

6.3 Proofs of the technical propositions and lemmas

6.3.1 Proof of Lemma 6.2

Let m ∈ Mn be fixed and let v be an eigenvalue of Gβ̂
m. There exists Am 6= 0 with coefficients (aj)j

such that Gβ̂
mAm = vAm and thus ATmGβ̂

mAm = vATmAm. Now, take h :=
∑
j ajϕj ∈ Sm. We have

||h||2
rand(β̂) = ATmG

β̂
mA

T
m and ||h||22 = ATmAm. Thus, on ∆1 ∩∆2 defined in (25) and (26) and from

Proposition 6.1:

ATmG
β̂
mA

T
m = ||h||2

rand(β̂) ≥
1
2 ||h||

2
rand ≥

1
4 ||h||

2
det ≥

1
4f0e−B|β0|1 ||h||22.

Therefore, on ∆1 ∩∆2, for all m ∈Mn, we have min Sp(Gβ̂
m) ≥ f0e−3BR/4. Moreover, on Ω, we have

f0 ≥ 2f̂0/3 and max(f̂0e−3BR/6, n−1/2) = f̂0e−3BR/6 for n ≥ 36/(f̂0e−3BR)2, which is equivalent on
Ω to choose n ≥ 16/(f0e−3BR)2.

6.3.2 Proof of Proposition 6.3

We have the following decomposition :

E[||α̂β̂
m̂β̂
− αβ0

m ||2det1ℵck ] ≤E[||α̂β̂
m̂β̂
− αβ0

m ||2det1∆c
1
] + E[||α̂β̂

m̂β̂
− αβ0

m ||2det1∆c
2
]

+E[||α̂β̂
m̂β̂
− αβ0

m ||2det1Ωc ] + E[||α̂β̂
m̂β̂
− αβ0

m ||2det1(ΩkH)c ].
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We deduce that

E[||α̂β̂
m̂β̂
− αβ0

m ||2det1ℵck ] ≤ 2
(
E[||α̂β̂

m̂β̂
− α0||2det1∆c

1
] + E[||αβ0

m − α0||2det1∆c
1
]

+E[||α̂β̂
m̂β̂
− α0||2det1∆c

2
] + E[||αβ0

m − α0||2det1∆c
2
]

+E[||α̂β̂
m̂β̂
− α0||2det1Ωc ] + E[||αβ0

m − α0||2det1Ωc ]

+E[||α̂β̂
m̂β̂
− α0||2det1(ΩkH)c ] + E[||αβ0

m − α0||2det1(ΩkH)c ]
)
.

From definition (15) of αβ0
m and Proposition 6.1, we have ||αβ0

m − α0||2det ≤ ||α0||2det ≤ E[eβT0 Z ]||α0||22.
From this relation and using Cauchy-Schwarz Inequality, we have

E[||α̂β̂
m̂β̂
− αβ0

m ||2det1ℵck ] ≤ 4E[eβT0 Z ]
[
E1/2(||α̂β̂

m̂β̂
||42)
(
P1/2(∆c

1)+P1/2(∆c
2)

+P1/2(Ωc) + P1/2((Ωk
H)c)

)
+ ||α0||22(P(∆c

1) + P(∆c
2)+P(Ωc) + P((Ωk

H)c))
]
.

From Assumption 3.4, Proposition 3.2, Lemmas 6.6, 6.7 and 6.8 with k = 6, we conclude that

E[||α̂β̂
m̂β̂
− αβ0

m ||2det1ℵck ] ≤ 2E[eβT0 Z ]
[√

Cbn4

(√
C

(∆1)
6
n6 +

√
C

(∆2)
6
n6 +

√
C0
n6 +

√
c

n6

)

+ ||α0||22

(
C

(∆1)
6
n6 + C

(∆2)
6
n6 + C0

n6 + c

n6

)]

≤ c̃1
n
,

which ends the proof of Proposition 6.3.

6.3.3 Proof of Proposition 6.5

The proof is inspired from the paper of Brunel et al. (2010). If we denote (ϕj)j∈Kn the orhonormal
basis of the global nesting space Sn (see Assumption 3.5.(iii)), since α belongs to Bdetn (0, 1) ⊂ Sn, we
can write α(t) =

∑
j∈Kn ajϕj(t), with dimSn = Dn = |Kn|. With this definition, we obtain

ηn(α, αβ0
m ) =

∑
j,j′

ajaj′
1
n

n∑
i=1

( ∫ τ

0
ϕj(t)αβ0

m (t)eβT0 ZiYi(t)dt
∫ τ

0
ϕj′α

β0
m (t)eβT0 ZiYi(t)dt

− E
[ ∫ τ

0
ϕj(t)αβ0

m (t)eβT0 ZiYi(t)dt
∫ τ

0
ϕj′α

β0
m (t)eβT0 ZiYi(t)dt

])
For sake of simplicity, we introduce the notation

Aij,j′ =
∫ τ

0
ϕj(t)αβ0

m (t)eβT0 ZiYi(t)dt
∫ τ

0
ϕj′(t)αβ0

m (t)eβT0 ZiYi(t)dt.

Applying the Cauchy-Schwarz Inequality, we get

|ηn(α, αβ0
m )| ≤

√∑
j,j′

a2
ja

2
j′

√√√√∑
j,j′

( 1
n

n∑
i=1

(Aij,j′ − E[Aij,j′ ])
)2
.
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From Proposition 6.1, we have

sup
α∈Bdetn (0,1)

ηn(α, αβ0
m )2 ≤ sup

(aj),
∑

j
a2
j≤1

1
(e−B|β0|1f0)2

∑
j,j′

a2
ja

2
j′
∑
j,j′

( 1
n

n∑
i=1

(Aij,j′ − E[Aij,j′ ])
)2

≤ 1
(e−B|β0|1f0)2

∑
j,j′

( 1
n

n∑
i=1

(Aij,j′ − E[Aij,j′ ])
)2
.

Taking the expectation, it follows that

E
[

sup
α∈Bdetn (0,1)

ηn(α, αβ0
m )2

]
≤ 1

(e−B|β0|1f0)2

∑
j,j′

Var
[

1
n

n∑
i=1

Aij,j′

]

≤ 1
(e−B|β0|1f0)2

∑
j,j′

1
n
E
[
(A1

j,j′)2
]
.

Thus, from the definition of A1
j,j′ , we obtain that E[supα∈Bdetn (0,1)ηn(α, αβ0

m )2] is less than

1
(e−B|β0|f0)2

1
n

∑
j,j′

E
[(∫ τ

0
ϕj(t)αβ0

m (t)eβT0 ZY (t)dt
)2(∫ τ

0
ϕj′(t)αβ0

m (t)eβT0 ZY (t)dt
)2]

.

From Brunel et al. (2010) p.301, Equation (2.7), we have

∑
j∈Kn

(∫ τ

0
ϕj(t)αβ0

m (t)eβT0 ZY (t)dt
)2
≤
∫ τ

0
(αβ0

m (t)eβT0 ZY (t))2dt ≤ e2βT0 Z ||αβ0
m ||22.

From this inequality, we obtain

E
[

sup
α∈Bdetn (0,1)

ηn(α, αβ0
m )2

]
≤ E[e4βT0 Z ]||αβ0

m ||42
(e−B|β0|1f0)2

1
n
.

6.3.4 Proof of Lemma 6.6

From Assumption 3.1, we recall that |β̂ − β0|1 ≤ 2R. On Ĥβ̂
m̂β̂

, we have

||α̂β̂
m̂β̂
||22 =

∑
j∈J

m̂β̂

(âm̂β̂j )2 = ||A
m̂β̂ ||22 = ||(Gβ̂

m̂β̂
)−1Γ

m̂β̂ ||22

≤ (min Sp(Gβ̂

m̂β̂
))−2||Γ

m̂β̂ ||22

≤ min
(

36
f̂2

0 e−2B|β0|1−2B|β0−β̂|1
, n

) ∑
j∈J

m̂β̂

(
1
n

n∑
i=1

∫ τ

0
ϕj(t)dNi(t)

)2

≤ min
(

36
f̂2

0 e−2B|β0|1−4BR
, n

)
1
n

n∑
i=1

∑
j∈J

m̂β̂

(∫ τ

0
ϕj(t)dNi(t)

)2
.
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So we have

||α̂β̂
m̂β̂
||42 ≤ n2 1

n

n∑
i=1

 ∑
j∈J

m̂β̂

(∫ τ

0
ϕj(t)dNi(t)

)2


2

≤ n2 1
n

n∑
i=1

∑
j∈Kn

(∫ τ

0
ϕj(t)dNi(t)

)2
2

,

where Kn is a set of indices of the global nesting space Sn, defined in Assumption 3.5.(iii), and
dimSn = Dn = |Kn|. Thus, we deduce that

||α̂β̂
m̂β̂
||42 ≤ n2Dn

1
n

n∑
i=1

∑
j∈Kn

(∫ τ

0
ϕj(t)dNi(t)

)4
.

Now,

E

 1
n

n∑
i=1

∑
j∈Kn

(∫ τ

0
ϕj(t)dNi(t)

)4
 ≤ 23

n

n∑
i=1

∑
j∈Kn

E
[(∫ τ

0
ϕj(t)dMi(t)

)4
]

+ 23

n

n∑
i=1

∑
j∈Kn

E
[(∫ τ

0
ϕj(t)α0(t)eβT0 ZiYi(t)dt

)4
]
.

Using the Bürkholder Inequality (see Liptser and Shiryayev (1989)), we get

E

 1
n

n∑
i=1

∑
j∈Kn

(∫ τ

0
ϕj(t)dMi(t)

)4
 ≤ κb 1

n

n∑
i=1

∑
j∈Kn

E
[(∫ τ

0
ϕ2
j (t)dNi(t)

)2
]

≤ κb
1
n

n∑
i=1

∑
j∈Kn

E

Ni(τ)
∑

s:∆Ni 6=0
ϕ4
j (s)


≤ κb

1
n

n∑
i=1

E

Ni(τ)
∑

s:∆Ni 6=0

∑
j∈Kn

ϕ4
j (s)

 ,

which is finally bounded from Assumption 3.5.(ii) by

E

 1
n

n∑
i=1

∑
j∈Kn

(∫ τ

0
ϕj(t)dMi(t)

)4
 ≤ κbφ2D2

n

1
n

n∑
i=1

E

Ni(τ)
∑

s:∆Ni 6=0
1


≤ κbφ2D2

nE[N1(τ)2].

Then, we can write that

[N1(τ)]2 =
[
M1(τ) +

∫ τ

0
α0(t)eβT0 ZY (t)dt

]2

≤ 2(M1(τ))2 + 2
(∫ τ

0
α0(t)eβT0 ZY (t)dt

)2
,

and
E[(M1(τ))2] ≤ E

[∫ τ

0
α0(t)eβT0 ZY (t)dt

]
≤ τ ||α0||∞,τE[eβT0 Z ],
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so that
E[(N1(τ))2] ≤ 2||α0||∞,ττE[eβT0 Z ] + 2||α0||2∞,τ (E[eβT0 Z ])2τ2.

So, by using Cauchy-Schwarz Inequality, we obtain

E
[

1
n

n∑
i=1

∑
j∈Kn

(∫ τ

0
φj(t)dNi(t)

)4]

≤ 8κbφ2D2
nE[(N1(τ))2] + 8

∑
j∈Kn

E
[(∫ τ

0
ϕj(t)α0(t)eβT0 ZY (t)dt

)4]

≤ 8κbφ2D2
nE[(N1(τ))2] + 8||α0||4∞,τE[e4βT0 Z ]τ2Dn.

Eventually, under Assumption 3.5.(i), we get

E[||α̂β̂
m̂β̂
||42] ≤ n2Dn

[
8κbφ2D2

n

(
2||α0||∞ττE[eβT0 Z ] + 2||α0||2∞,τ (E[eβT0 Z ])2τ2

)
+ 8||α0||4∞,τE[e4βT0 Z ]τ2Dn

]
≤ Cbn2D3

n

≤ Cbn4,

where Cb is a constant that depends on κb, ||α0||∞,τ , τ , E[eβT0 Z ] and E[e4βT0 Z ] and on the choice of
the basis.

6.3.5 Proof of Lemma 6.7

The event ∆1 defined by (25) can be rewritten as

∆1 =
{
ω ∈ Ω, ∀α ∈ Sn\{0} :

∣∣∣∣∣ ||α||
2
rand(ω)
||α||2det

− 1
∣∣∣∣∣ ≤ 1

2

}
,

and consider

ϑn(α) = 1
n

n∑
i=1

∫ τ

0

(
α(t)eβT0 ZiYi(t)− E[α(t)eβT0 ZiYi(t)]

)
dt = ||

√
α||2rand − ||

√
α||2det. (39)

If ω ∈ (∆1)c, then there exists α (which can depend on ω) such that∣∣∣∣∣ ||α||
2
rand(ω)
||α||2det

− 1
∣∣∣∣∣ > 1

2 .

Taking γ = α/||α||2det, we have that

γ ∈ Sn\{0}, ||γ||2det = 1, and |||γ||2rand(ω) − 1| > 1
2 .

So, if ω ∈ (∆1)c, then

ω ∈
{
ω ∈ Ω : sup

γ∈Sn\{0},||γ||2det=1
|||γ||2rand(ω) − 1| > 1

2

}
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From this, we deduce that,

P((∆1)c) ≤ P
(

sup
α∈Bdetn (0,1)

|ϑn(α2)| > 1− 1
ρ1

)
,

where Bdetn (0, 1) is defined by (31). Since α ∈ Bdetn (0, 1) ⊂ Sn, then we can write α(t) =
∑
j∈Kn a

m
j ϕj(t),

where Kn is a set of indices of Sn and dimSn = Dn = |Kn|. With this notation, we have

ϑn(α2) =
∑
j,k

ajakϑn(ϕjϕk).

From Proposition 6.1, we have

sup
α∈Bdetn (0,1)

|ϑn(α2)| ≤ 1
f0e−B|β0|1

sup
(aj),

∑
j∈Kn

a2
j≤1

∣∣∣∑
j,k

ajakϑn(ϕjϕk)
∣∣∣.

Let consider the process (U (j,k)
i ) defined by

U
(j,k)
i =

∫ τ

0
ϕj(t)ϕk(t)eβ

T
0 ZiYi(t)dt,

We have |U (j,k)
i | ≤ eB|β0|1 and from Cauchy-Schwarz Inequality, we have

(U (j,k)
i )2 ≤ e2B|β0|1

∫ τ

0
ϕ2
j (t)dt

∫ τ

0
ϕ2
k(t)dt ≤ e2B|β0|1 .

We can apply the standard Bernstein Inequality (see Massart (2007)) to the process (U (j,k)
i ), and we

obtain
P
(
|ϑn(ϕjϕk)| ≥ eB|β0|1x+

√
2e2B|β0|1x

)
≤ 2e−nx. (40)

Let introduce

Θ := {∀j, k, |ϑn(ϕjϕk)| ≤ eB|β0|1x+ eB|β0|1
√

2x} and x := f2
0 e−2B|β0|1

16D2
ne2B|β0|1

.

On Θ, we can write that supα∈Bdetn (0,1)|ϑn(α2)| is less than
1

f0e−B|β0|1
sup

(aj),
∑

j∈Kn
a2
j≤1

∑
j,k

|ajak|(eB|β0|1x+ eB|β0|1
√

2x)

≤ 1
f0e−B|β0|1

sup
(aj),

∑
j∈Kn

a2
j≤1

(∑
j

|aj |
)2

(eB|β0|1x+ eB|β0|1
√

2x),

which is less than

≤ 1
f0e−B|β0|1

Dm

(
eB|β0|1f2

0 e−2B|β0|1

16D2
ne2B|β0|1

+ eB|β0|1
√

2f0e−B|β0|1

4DneB|β0|1

)

≤1
2

(1
8

f0
e2B|β0|1Dn

+ 1√
2

)
≤1

2

(1
4 + 1√

2

)
≤1

2 . (41)
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From Inequality (41), we deduce that P((∆1)c) ≤ P(Θc). So using Inequality (40), we can conclude
that

P((∆1)c) ≤
∑
j,k

P
(
|ϑn(ϕjϕk)| > eB|β0|1x+ eB|β0|1

√
2x
)

≤ 2D2
n exp

(
−nf

2
0 e−2B|β0|1

16D2
ne2B|β0|1

)

≤ 2n exp
(
− f2

0
16e4B|β0|1

n

D2
n

)

≤ 2n exp
(
− f2

0
16e4B|β0|1

logn
)

≤
C∆1
k

nk
, ∀k ≥ 1,

as Dn ≤
√
n/ logn from Assumption 3.5.(iii), which ends the proof of Lemma 6.7 with C∆1

k a constant
depending on ρ1, f0, B and |β0|1.

6.3.6 Proof of Lemma 6.8

For ρ2 ≥ 1, let define

∆ρ2
2 =

∀α ∈ Sn :

∣∣∣∣∣∣
||α||2

rand(β̂)
||α||2rand

− 1

∣∣∣∣∣∣ ≤ 1− 1
ρ2

 .
Let consider

ϑ̃n(α) = 1
n

n∑
i=1

∫ τ

0
(α(t)eβ̂TZiYi(t)− α(t)eβT0 ZiYi(t))dt = ||

√
α||2

rand(β̂) − ||
√
α||2rand.

Following the same approach as in the proof of Lemma 6.7, we have

P((∆ρ2
2 )c) ≤ P

(
sup

α∈Bdetn (0,1)
|ϑ̃n(α2)| > 1− 1

ρ2

)
, (42)

where Bdetn (0, 1) = {α ∈ Sn : ||α||det ≤ 1}. The process ϑ̃n(α2) is bounded by

|ϑ̃n(α2)| ≤ BeB|β0|1e2BR|β̂ − β0|1||α||22 ≤ |β̂ − β0|1
BeB|β0|1e2BR

f0e−B|β0|1
||α||2det.

So we get

sup
α∈BdetSn (0,1)

|ϑ̃n(α2)| ≤ |β̂ − β0|1
Be2B|β0|1e2BR

f0
.

From Proposition 3.2, we have with probability larger than 1− cn−k

|β̂ − β0|1 ≤ C(s)

√
log(pnk)

n
.
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Then we have with probability larger than 1− cn−k

sup
α∈BdetSn (0,1)

|ϑ̃n(α2)| ≤ C(s)

√
log(pnk)

n

Be2B|β0|1e2BR

f0
.

Thus, by taking 1− 1/ρ2 = C(s)

√
log(pnk)

n

Be2B|β0|1e2BR

f0
in (42), we obtain

P((∆ρ2
2 )c) ≤ cn−k.

From Assumption 3.3, we deduce that for n large enough,

1− 1
ρ2

<
1
2 ,

so that ∆2 defined by (26) verifies P((∆2)c) ≤ P((∆ρ2
2 )c) ≤ C(∆2)

k n−k, with C(∆2)
k = c > 0.

A Prediction result on the Lasso estimator β̂ of β0 for unbounded
counting processes

To obtain a non-asymptotic prediction bound on the Lasso estimator β̂ of the regression parameter
in the Cox model, we rely on Theorem 3.1 of Huang et al. (2013), that we recall here.

Let consider the classical Lasso estimator β̂ defined by (3) when p� n.
We define l̇∗n(β) = (l̇∗n,1(β), ..., l̇∗n,p(β))T = ∂l∗n(β)/∂β the gradient of the Cox partial log-likelihood

l∗n(β) defined by (4) and l̈∗n(β) = ∂2l∗n(β)/∂β∂βT the Hessian matrix.
Let us now describe the result of Huang et al. (2013), on which we rely for our study, starting with

the notations. Let O = {j : β0j 6= 0}, Oc = {j : β0j = 0} and s = |O| the cardinality of O. For any
ξ > 1, we define the cone

C(ξ,O) = {b ∈ Rp : |bOc |1 ≤ ξ|bO|1}.

For this cone, let us define the following condition:

0 < κ(ξ,O) = inf
06=b∈C(ξ,O)

s1/2(bl̈∗n(β0)b)1/2

|bO|1
.

This term corresponds to the compatibility factor introduced by van de Geer (2007). It is one of the
classical condition used to obtain non-asymptotic oracle inequalities. See also Bühlmann and van de
Geer (2009) for more details about this compatibility factor and the comparison of this criterion with
other assumptions such as the Restricted Eigenvalue condition among other.

With these notations, we can state the following theorem established by Huang et al. (2013).

Theorem A.1 (Huang et al. (2013)). Let k > 0 and ν = B(ξ + 1)sΓn,k/{2κ2(ξ,O)}. Suppose
Assumption 2.2.(i) holds and ν ≤ 1/e. Then, on the event

Ω̃k
H =

{
|l̇∗n(β0)|∞ ≤

ξ − 1
ξ + 1Γn,k

}
, with Γn,k = C0B

ξ + 1
ξ − 1

√
2log(pnk)

n
, (43)
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we have
|β̂ − β0|1 ≤

eη(ξ + 1)s
2κ2(ξ,O) Γn,k,

where η ≤ 1 is the smaller solution of ηe−η = ν and C0 >
√
τ ||α0||∞,τE[eβT0 Z ].

We refer to Huang et al. (2013) for the proof of Theorem A.1. Huang et al. (2013) have calculated
the probability of Ω̃k

H only in the case where max1≤i≤n |Ni(τ)| < +∞. We extend the result to the
unbounded case in the following lemma.

Lemma A.2. Let consider, for k > 0, the event Ω̃k
H defined by (43). Then, under Assumptions 2.2.(i)

and (iv), there exists a constant c > 0 depending on τ , ||α0||∞,τ and E[eβT0 Z ] such that

P((Ω̃k
H)c) ≤ cn−k.

The proof of this lemma follows. From this lemma, we can rewrite Theorem A.1 as:

Corollary A.3. Let ν = B(ξ + 1)sΓn,k/{2κ2(ξ,O)}, k > 0 and c > 0. Suppose Assumptions 2.2.(i)
and (iv) hold and ν ≤ 1/e. Then, with probability larger than 1− cn−k

|β̂ − β0|1 ≤
eη(ξ + 1)s
2κ2(ξ,O) Γn,k with Γn,k = C0B

ξ + 1
ξ − 1

√
2log(pnk)

n
,

where η ≤ 1 is the smaller solution of ηe−η = ν and C0 >
√
τ ||α0||∞,τE[eβT0 Z ].

From Corollary A.3 and Assumption 2.2.(i), we deduce a prediction inequality given by the fol-
lowing proposition.

Proposition A.4. Let k > 0 and c > 0. Under Assumptions 2.2.(i) and 2.2.(iv), with probability
larger than 1− cn−k, we have

|β̂ − β0|1 ≤ C(s)

√
log(pnk)

n
, (44)

where C(s) > 0 is a constant depending on the sparsity index s.

Remark A.5. From Proposition A.4 and Definition (27) of Ωk
H , we deduce that Ω̃k

H ⊂ Ωk
H .

Proof of Lemma A.2 To prove Lemma A.2, we start from Lemma 3.3. p.10 in the paper of
Huang et al. (2013), that we enounce below.

Lemma A.6 (Lemma 3.3 from Huang et al. (2013)). Suppose that Assumption 2.2.(i) is verified. Let
l̇∗n(β) be the gradient of the l∗n(β) defined by (4). Then, for all C0 > 0,

P
(
|l̇∗n(β0)|∞ > C0Bx,

n∑
i=1

∫ τ

0
Yi(t)dNi(t) ≤ C2

0n

)
≤ 2pe−nx2/2. (45)

In particular, if maxi≤nNi(τ) ≤ 1, then P(|l̇∗n(β0)|∞ > Bx) ≤ 2pe−nx2/2.

Before proving the lemma that is in interest, we recall the Bernstein Inequality for martingales
(see van de Geer (1995)).
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Lemma A.7 (Lemma 2.1 from van de Geer (1995)). Let {Mt}t≥0 be a locally square integrable
martingale w.r.t. the filtration {Ft}t≥0. Denote the predictable variation of {Mt} by Vt = 〈M,M〉t,
t ≥ 0, and its jumps by ∆Mt = Mt − Mt−. Suppose that |∆M(t)| ≤ K for all t > 0 and some
0 ≤ K <∞. Then for each a > 0, b > 0,

P(Mt ≥ a and Vt ≤ b2 for some t ) ≤ exp
[
− a2

2(aK + b2)

]
.

From Lemma A.6, to prove Lemma A.2, it remains to control

P
(

n∑
i=1

∫ τ

0
Yi(t)dNi(t) > C2

0n

)
,

Using the Doob-Meyer decomposition and since,
n∑
i=1

∫ τ

0
Yi(t)α0(t)eβT0 ZiYi(t)dt ≤ nτ ||α0||∞,τeB|β0|1 ,

we obtain for C0 >
√
τ ||α0||∞,τE[eβT0 Z ],

P
(

n∑
i=1

∫ τ

0
Yi(t)dNi(t) > C2

0n

)
≤ P

(
n∑
i=1

∫ τ

0
Yi(t)dMi(t) > C2

0n− nτ ||α0||∞,τeB|β0|1

)
.

Then, we apply Lemma A.7 to the martingale
∑n
i=1

∫ τ
0 Yi(t)dMi(t), with K = 1 and

Vt = E
[ n∑
i=1

∫ τ

0
Y 2
i (t)α0(t)eβT0 ZiYi(t)dt

]
≤ ||α0||∞,ττE[eβT0 Z ]n.

We obtain

P
(

n∑
i=1

∫ τ

0
Yi(t)dMi(t) > C2

0n− nτ ||α0||∞,τE[eβT0 Z ]
)

≤ exp
(
− n(C2

0 − τ ||α0||∞,τE[eβT0 Z ])2

2C2
0

)
.

Finally, we get

P
(
|l̇∗n(β0)|∞ > C0Bx

)
≤ 2pe−nx2/2 + exp

(
− n

2C2
0

(C2
0 − τ ||α0||∞,τE[eβT0 Z ])

)
.

Taking x =
√

2 log(nkp)/n, there exists a constant c > 0 depending on τ , ||α0||∞,τ and E[eβT0 Z ]
such that

P((Ω̃k
H)c) ≤ cn−k,

which leads to the expected result of Lemma A.2.
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Sankhyā: The Indian Journal of Statistics, pages 441–475, 2005.

E Brunel, F Comte, and A. Guilloux. Nonparametric density estimation in presence of bias and
censoring. test, 18(1):166–194, 2009.

E. Brunel, F. Comte, and C. Lacour. Minimax estimation of the conditional cumulative distribution
function. Sankhya A, 72(2):293–330, 2010.

P. Bühlmann and S. van de Geer. On the conditions used to prove oracle results for the Lasso.
Electronic Journal of Statistics, 3:pp. 1360–1392, 2009. ISSN 1935-7524. URL http://dx.doi.
org/10.1214/09-EJS506.

F. Bunea, A. B. Tsybakov, and M. Wegkamp. Sparsity oracle inequalities for the Lasso. Electronic
Journal of Statistics, 1:pp. 169–194, 2007a. ISSN 1935-7524. URL http://dx.doi.org/10.1214/
07-EJS008.

31

http://dx.doi.org/10.1007/978-1-4612-4348-9
http://dx.doi.org/10.1214/08-AOS620
http://dx.doi.org/10.1214/08-AOS620
http://dx.doi.org/10.1214/09-EJS506
http://dx.doi.org/10.1214/09-EJS506
http://dx.doi.org/10.1214/07-EJS008
http://dx.doi.org/10.1214/07-EJS008


F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Aggregation and sparsity via l1 penalized least
squares. In Proceedings of the 19th annual conference on Learning Theory, COLT’06, pages 379–
391, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-35294-5, 978-3-540-35294-5. URL http:
//dx.doi.org/10.1007/11776420_29.

F. Bunea, A.B. Tsybakov, and M.H. Wegkamp. Aggregation for gaussian regression. The Annals of
Statistics, 35(4):1674–1697, 2007b.

F. Bunea, A.B. Tsybakov, and M.H. Wegkamp. Sparse density estimation with l1 penalties. In
Learning theory, pages 530–543. Springer, 2007c.

F. Comte, S. Gaïffas, and A. Guilloux. Adaptive estimation of the conditional intensity of marker-
dependent counting processes. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 47
(4):1171–1196, 2011.

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B.
(Methodological), 34:pp. 187–220, 1972. ISSN 0035-9246.

D.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse overcomplete representations
in the presence of noise. Information Theory, IEEE Transactions on, 52(1):6–18, 2006.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of statistics,
32(2):407–499, 2004.

T.R. Fleming and D.P. Harrington. Counting processes and survival analysis, volume 169. John Wiley
& Sons, 2011.

E. Greenshtein and Y. Ritov. Persistence in high-dimensional linear predictor selection and the virtue
of overparametrization. Bernoulli, 10(6):971–988, 2004.

G. Grégoire. Least squares cross-validation for counting process intensities. Scandinavian journal of
statistics, pages 343–360, 1993.

J. Huang, T. Sun, Z. Ying, Y. Yu, and C.H. Zhang. Oracle inequalities for the lasso in the Cox model.
The Annals of Statistics, 41(3):1142–1165, 2013.

A. Juditsky and A. Nemirovski. Functional aggregation for nonparametric regression. Annals of
Statistics, pages 681–712, 2000.

K. Knight and W. Fu. Asymptotics for lasso-type estimators. Annals of statistics, 28(5):1356–1378,
2000. URL http://dx.doi.org/10.1214/aos/1015957397.

S. Kong and B. Nan. Non-asymptotic oracle inequalities for the high-dimensional Cox regression via
Lasso. Arxiv preprint arXiv:1204.1992, 2012.

F. Letué. Modèle de Cox : estimation par sélection de modèle et modèle de chocs bivarié. PhD thesis,
Université de Paris Sud, UFR scientifique d’Orsay, 2000.

R. Sh. Liptser and A. N. Shiryayev. Theory of martingales, volume 49 of Mathematics and its Appli-
cations (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989. ISBN 0-7923-0395-4.
URL http://dx.doi.org/10.1007/978-94-009-2438-3. Translated from the Russian by K. Dz-
japaridze [Kacha Dzhaparidze].

32

http://dx.doi.org/10.1007/11776420_29
http://dx.doi.org/10.1007/11776420_29
http://dx.doi.org/10.1214/aos/1015957397
http://dx.doi.org/10.1007/978-94-009-2438-3


C.L. Mallows. Some comments on c p. Technometrics, 15(4):661–675, 1973.

P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in Math-
ematics. Springer, Berlin, 2007. ISBN 978-3-540-48497-4; 3-540-48497-3. Lectures from the 33rd
Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword by
Jean Picard.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso.
The Annals of Statistics, 34(3):pp. 1436–1462, 2006.

N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data.
The Annals of Statistics, pages 246–270, 2009.

A. Nemirovski. Topics in nonparametric statistics. Ecole d’Ete de Probabilites de Saint-Flour XXVIII,
1998, 28:85, 2000.

H. Ramlau-Hansen. The choice of a kernel function in the graduation of counting process intensities.
Scandinavian Actuarial Journal, 1983(3):165–182, 1983a.

H. Ramlau-Hansen. Smoothing counting process intensities by means of kernel functions. The Annals
of Statistics, pages 453–466, 1983b.

P. Reynaud-Bouret. Penalized projection estimators of the aalen multiplicative intensity. Bernoulli,
12(4):633–661, 2006.

M. Talagrand. New concentration inequalities in product spaces. Invent. Math., 126(3):505–563, 1996.
ISSN 0020-9910. URL http://dx.doi.org/10.1007/s002220050108.

M. Talagrand. The generic chaining. Springer Monographs in Mathematics. Springer-Verlag, Berlin,
2005. ISBN 3-540-24518-9. Upper and lower bounds of stochastic processes.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):pp. 267–288, 1996. ISSN 0035-9246. URL http://links.
jstor.org/sici?sici=0035-9246(1996)58:1<267:RSASVT>2.0.CO;2-G&origin=MSN.

R. Tibshirani. The Lasso method for variable selection in the Cox model. Statistics in
Medicine, 16(4):pp. 385–395, 1997. ISSN 1097-0258. URL http://dx.doi.org/10.1002/(SICI)
1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3.

S. van de Geer. Exponential inequalities for martingales, with application to maximum likelihood
estimation for counting processes. The Annals of Statistics, 23(5):pp. 1779–1801, 1995. ISSN
00905364. URL http://www.jstor.org/stable/2242545.

S. van de Geer. The deterministic lasso. Rapport technique, ETH Zürich, Switzerland, Available at
http://stat.ethz.ch/research/publ archive/2007/140., 2007.

S. van de Geer. High-dimensional generalized linear models and the lasso. The Annals of Statistics,
36(2):pp. 614–645, 2008.

N. Verzelen. Minimax risks for sparse regressions: Ultra-high dimensional phenomenons. Electronic
Journal of Statistics, 6:38–90, 2012.

33

http://dx.doi.org/10.1007/s002220050108
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<267:RSASVT>2.0.CO;2-G&origin=MSN
http://links.jstor.org/sici?sici=0035-9246(1996)58:1<267:RSASVT>2.0.CO;2-G&origin=MSN
http://dx.doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
http://www.jstor.org/stable/2242545


C.H. Zhang and J. Huang. The sparsity and bias of the Lasso selection in high-dimensional linear
regression. The Annals of Statistics, 36(4):pp. 1567–1594, 2008.

P. Zhao and B. Yu. On model selection consistency of lasso. The Journal of Machine Learning
Research, 7:2541–2563, 2006.

34


	Introduction
	Notations and preliminaries
	Estimation procedure
	Non-asymptotic oracle inequalities
	Applications: simulation study
	Proofs
	Prediction result on the Lasso estimator  of 0 for unbounded counting processes

